skip to main content
research-article

Dynamic element textures

Published:21 July 2013Publication History
Skip Abstract Section

Abstract

Many natural phenomena consist of geometric elements with dynamic motions characterized by small scale repetitions over large scale structures, such as particles, herds, threads, and sheets. Due to their ubiquity, controlling the appearance and behavior of such phenomena is important for a variety of graphics applications. However, such control is often challenging; the repetitive elements are often too numerous for manual edit, while their overall structures are often too versatile for fully automatic computation.

We propose a method that facilitates easy and intuitive controls at both scales: high-level structures through spatial-temporal output constraints (e.g. overall shape and motion of the output domain), and low-level details through small input exemplars (e.g. element arrangements and movements). These controls are suitable for manual specification, while the corresponding geometric and dynamic repetitions are suitable for automatic computation. Our system takes such user controls as inputs, and generates as outputs the corresponding repetitions satisfying the controls.

Our method, which we call dynamic element textures, aims to produce such controllable repetitions through a combination of constrained optimization (satisfying controls) and data driven computation (synthesizing details). We use spatial-temporal samples as the core representation for dynamic geometric elements. We propose analysis algorithms for decomposing small scale repetitions from large scale themes, as well as synthesis algorithms for generating outputs satisfying user controls. Our method is general, producing a range of artistic effects that previously required disparate and specialized techniques.

Skip Supplemental Material Section

Supplemental Material

tp173.mp4

References

  1. Ahuja, N., and Todorovic, S. 2007. Extracting texels in 2.1D natural textures. ICCV 0, 1--8.Google ScholarGoogle Scholar
  2. Barbič, J., da Silva, M., and Popović, J. 2009. Deformable object animation using reduced optimal control. In SIGGRAPH '09, 53:1--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Barla, P., Breslav, S., Thollot, J., Sillion, F., and Markosian, L. 2006. Stroke pattern analysis and synthesis. In Computer Graphics Forum (Proc. of Eurographics 2006), vol. 25.Google ScholarGoogle Scholar
  4. Cheng, M.-M., Zhang, F.-L., Mitra, N. J., Huang, X., and Hu, S.-M. 2010. Repfinder: finding approximately repeated scene elements for image editing. In SIGGRAPH '10, 83:1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Cho, J. H., Xenakis, A., Gronsky, S., and Shah, A. 2007. Course 6: Anyone can cook: inside ratatouille's kitchen. In SIGGRAPH 2007 Courses.Google ScholarGoogle Scholar
  6. Dischler, J., Maritaud, K., Lévy, B., and Ghazanfarpour, D. 2002. Texture particles. In EUROGRAPH '02, vol. 21, 401--410.Google ScholarGoogle Scholar
  7. Dong, Y., Lefebvre, S., Tong, X., and Drettakis, G. 2008.Google ScholarGoogle Scholar
  8. Lazy solid texture synthesis. In Computer Graphics Forum (EGSR).Google ScholarGoogle Scholar
  9. Efros, A. A., and Leung, T. K. 1999. Texture synthesis by non-parametric sampling. In ICCV '99, 1033--. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Guy, S. J., van den Berg, J., Liu, W., Rynson, L., Lin, M. C., and Manocha, D. 2012. A statistical similarity measure for aggregate crowd dynamics. In SIGGRAPH Asia '12, 190:1--190:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Hertzmann, A., Jacobs, C. E., Oliver, N., Curless, B., and Salesin, D. H. 2001. Image analogies. In SIGGRAPH '01, 327--340. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Ijiri, T., Mech, R., Igarashi, T., and Miller, G. 2008. An example-based procedural system for element arrangement. EUROGRAPH '08 27, 2, 429--436.Google ScholarGoogle Scholar
  13. James, D. L., Twigg, C. D., Cove, A., and Wang, R. Y. 2007. Mesh ensemble motion graphs: Data-driven mesh animation with constraints. ACM Trans. Graph. 26. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Ju, E., Choi, M. G., Park, M., Lee, J., Lee, K. H., and Takahashi, S. 2010. Morphable crowds. In SIGGRAPH Asia '10, 140:1--140:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Kavan, L., Gerszewski, D., Bargteil, A., and Sloan, P.-P. 2011. Physics-inspired upsampling for cloth simulation in games. In SIGGRAPH '11, 93:1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Kazi, R. H., Igarashi, T., Zhao, S., and Davis, R. 2012. Vignette: Interactive texture design and manipulation with freeform gestures for pen-and-ink illustraion. In CHI'12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Kovar, L., Gleicher, M., and Pighin, F. 2002. Motion graphs. In SIGGRAPH '02, 473--482. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Kuhn, H. 1955. The hungarian method for the assignment problem. Naval research logistics quarterly 2, 1-2, 83--97.Google ScholarGoogle Scholar
  19. Kwatra, V., Schödl, A., Essa, I., Turk, G., and Bobick, A. 2003. Graphcut textures: image and video synthesis using graph cuts. In SIGGRAPH '03, 277--286. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Kwatra, V., Essa, I., Bobick, A., and Kwatra, N. 2005. Texture optimization for example-based synthesis. In SIGGRAPH '05, 795--802. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Kwatra, V., Adalsteinsson, D., Kim, T., Kwatra, N., Carlson, M., and Lin, M. 2007. Texturing fluids. IEEE Trans. Visualization and Computer Graphics 13, 5, 939--952. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Kwon, T., Lee, K. H., Lee, J., and Takahashi, S. 2008. Group motion editing. In SIGGRAPH '08, 80:1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Lefebvre, S., and Hoppe, H. 2005. Parallel controllable texture synthesis. In SIGGRAPH '05, 777--786. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Lefebvre, S., and Hoppe, H. 2006. Appearance-space texture synthesis. In SIGGRAPH '06, 541--548. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Li, Y., Christie, M., Siret, O., Kulpa, R., and Pettré, J. 2012. Cloning crowd motion. In SCA '12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Lu, J., Georghiades, A. S., Glaser, A., Wu, H., Wei, L.-Y., Guo, B., Dorsey, J., and Rushmeier, H. 2007. Context-aware textures. ACM Trans. Graph. 26, 1, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Ma, C., Wei, L.-Y., and Tong, X. 2011. Discrete element textures. In SIGGRAPH '11, 62:1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Müller, M., and Chentanez, N. 2011. Solid simulation with oriented particles. In SIGGRAPH '11, 92:1--92:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Narain, R., Golas, A., Curtis, S., and Lin, M. 2009. Aggregate dynamics for dense crowd simulation. In SIGGRAPH Asia '09, 122:1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Narain, R., Golas, A., and Lin, M. C. 2010. Free-flowing granular materials with two-way solid coupling. In SIGGRAPH Asia '10, 173:1--173:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Paget, R., and Longstaff, I. D. 1995. Texture synthesis via a nonparametric markov random field. In Proceedings of DICTA-95, Digital Image Computing: Techniques and Applications, vol. 1, 547--552.Google ScholarGoogle Scholar
  32. Popović, J., Seitz, S. M., Erdmann, M., Popović, Z., and Witkin, A. 2000. Interactive manipulation of rigid body simulations. In SIGGRAPH '00, 209--217. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Pullen, K., and Bregler, C. 2002. Motion capture assisted animation: texturing and synthesis. In SIGGRAPH '02, 501--508. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Schödl, A., Szeliski, R., Salesin, D. H., and Essa, I. 2000. Video textures. In SIGGRAPH '00, 489--498. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Sewall, J., Wilkie, D., and Ling, M. C. 2011. Interactive hybrid simulation of large-scale traffic. In SIGGRAPH Asia '11, 135:1--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Soares, O., Raja, S., Hurrey, R., and Iben, H. 2012. Curls gone wild: hair simulation in brave. In SIGGRAPH '12 Talks, 22:1--22:1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Stam, J., and Fiume, E. 1993. Turbulent wind fields for gaseous phenomena. In SIGGRAPH '93, 369--376. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Szummer, M., and Picard, R. W. 1996. Temporal texture modeling. In IEEE Intl. Conf. Image Processing, vol. 3, 823--826.Google ScholarGoogle Scholar
  39. Thürey, N., Keiser, R., Pauly, M., and Rüde, U. 2006. Detail-preserving fluid control. SCA '06, 7--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Tong, X., Zhang, J., Liu, L., Wang, X., Guo, B., and Shum, H.-Y. 2002. Synthesis of bidirectional texture functions on arbitrary surfaces. In SIGGRAPH '02, 665--672. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Turk, G. 2001. Texture synthesis on surfaces. In SIGGRAPH '01, 347--354. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Wang, J., Tong, X., Lin, S., Pan, M., Wang, C., Bao, H., Guo, B., and Shum, H.-Y. 2006. Appearance manifolds for modeling time-variant appearance of materials. In SIGGRAPH '06, 754--761. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Wang, L., Yu, Y., Zhou, K., and Guo, B. 2009. Example-based hair geometry synthesis. In SIGGRAPH '09, 56:1--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Wang, H., Hecht, F., Ramamoorthi, R., and O'Brien, J. 2010. Example-based wrinkle synthesis for clothing animation. In SIGGRAPH '10, 107:1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Wang, H., Ramamoorthi, R., and O'Brien, J. F. 2011. Data-driven elastic models for cloth: Modeling and measurement. In SIGGRAPH '11, 71:1--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Wei, L.-Y., and Levoy, M. 2000. Fast texture synthesis using tree-structured vector quantization. In SIGGRAPH '00, 479--488. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Wei, L.-Y., Han, J., Zhou, K., Bao, H., Guo, B., and Shum, H.-Y. 2008. Inverse texture synthesis. In SIGGRAPH '08, 52:1--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Wei, L.-Y., Lefebvre, S., Kwatra, V., and Turk, G. 2009. State of the art in example-based texture synthesis. In Eurographics '09 State of the Art Report, 93--117.Google ScholarGoogle Scholar
  49. Xu, X., Wan, L., Liu, X., Wong, T.-T., Wang, L., and Leung, C.-S. 2008. Animating animal motion from still. In SIGGRAPH Asia '08, 117:1--117:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Zhu, Y., and Bridson, R. 2005. Animating sand as a fluid. In SIGGRAPH '05, 965--972. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Dynamic element textures

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 32, Issue 4
      July 2013
      1215 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/2461912
      Issue’s Table of Contents

      Copyright © 2013 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 21 July 2013
      Published in tog Volume 32, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader