Abstract
Recent years have seen proposals for exciting new computational display technologies that are compressive in the sense that they generate high resolution images or light fields with relatively few display parameters. Image synthesis for these types of displays involves two major tasks: sampling and rendering high-dimensional target imagery, such as light fields or time-varying light fields, as well as optimizing the display parameters to provide a good approximation of the target content.
In this paper, we introduce an adaptive optimization framework for compressive displays that generates high quality images and light fields using only a fraction of the total plenoptic samples. We demonstrate the framework for a large set of display technologies, including several types of auto-stereoscopic displays, high dynamic range displays, and high-resolution displays. We achieve significant performance gains, and in some cases are able to process data that would be infeasible with existing methods.
Supplemental Material
Available for Download
Supplemental material.
- Adelson, E. H., and Bergen, J. R. 1991. The plenoptic function and the elements of early vision. In Comp. Models of Visual Processing, 3--20.Google Scholar
- Bertsekas, D. 1997. A New Class of Incremental Gradient Methods for Least Squares Problems. SIAM Journal on Optimization 7, 4, 913--926. Google Scholar
Digital Library
- Cook, R., Porter, T., and Carpenter, L. 1984. Distributed ray tracing. In Proc. SIGGRAPH, 137--145. Google Scholar
Digital Library
- Cossairt, O. S., Napoli, J., Hill, S. L., Dorval, R. K., and Favalora, G. E. 2007. Occlusion-Capable Multiview Volumetric Three-Dimensional Display. Applied Optics 46, 8, 1244--1250.Google Scholar
Cross Ref
- Didyk, P., Eisemann, E., Ritschel, T., Myszkowski, K., and Seidel, H.-P. 2010. Apparent Display Resolution Enhancement for Moving Images. ACM Trans. Graph. (SIGGRAPH) 29, 4, 113:1--113:8. Google Scholar
Digital Library
- Didyk, P., Ritschel, T., Eisemann, E., Myszkowski, K., and Seidel, H.-P. 2011. A Perceptual Model for Disparity. ACM Trans. Graph. (SIGGRAPH) 30, 4, 96:1--96:10. Google Scholar
Digital Library
- Egan, K., Tseng, Y.-T., Holzschuch, N., Durand, F., and Ramamoorthi, R. 2009. Frequency Analysis and Sheared Reconstruction for Rendering Motion Blur. ACM Trans. Graph. (SIGGRAPH) 28, 3, 93:1--93:13. Google Scholar
Digital Library
- Egan, K., Hecht, F., Durand, F., and Ramamoorthi, R. 2011. Frequency Analysis and Sheared Filtering for Shadow Light Fields of Complex Occluders. ACM Trans. Graph. 30, 2, 9:1--9:13. Google Scholar
Digital Library
- Friedlander, M., and Schmidt, M. 2012. Hybrid deterministic-stochastic methods for data fitting. SIAM Journal on Scientific Computing 34, 3, 1380--1405.Google Scholar
Cross Ref
- Glassner, A. S., Fishkin, K. P., Marimont, D. H., and Stone, M. C. 1995. Device-Directed Rendering. ACM Trans. Graph. 14, 1, 58--76. Google Scholar
Digital Library
- Gotoda, H. 2011. Reduction of Image Blurring in an Autostereoscopic Multilayer Liquid Crystal Display. In Proc. SPIE Stereoscopic Displays and Applications XXII, vol. 7863, 21:1--21:7.Google Scholar
Cross Ref
- Gregson, J., Krimerman, M., Hullin, M. B., and Heidrich, W. 2012. Stochastic Tomography and its Applications in 3D Imaging of Mixing Fluids. ACM Trans. Graph. (SIGGRAPH) 31, 4, 52:1--52:10. Google Scholar
Digital Library
- Grosse, M., Wetzstein, G., Grundhöfer, A., and Bimber, O. 2010. Coded Aperture Projection. ACM Trans. Graph. 29, 3, 22:1--22:12. Google Scholar
Digital Library
- Hastings, W. 1970. Monte carlo sampling methods using markov chains and their applications. Biometrika 57, 1, 97--109.Google Scholar
Cross Ref
- Ives, F. E., 1903. Parallax Stereogram and Process of Making Same. U.S. Patent 725,567.Google Scholar
- Jones, A., McDowall, I., Yamada, H., Bolas, M., and Debevec, P. 2007. Rendering for an interactive 360° light field display. ACM Trans. Graph. (SIGGRAPH) 26, 40:1--40:10. Google Scholar
Digital Library
- Lanman, D., Hirsch, M., Kim, Y., and Raskar, R. 2010. Content-Adaptive Parallax Barriers: Optimizing Dual-Layer 3D Displays using Low-Rank Light Field Factorization. ACM Trans. Graph. (SIGGRAPH Asia) 29, 163:1--163:10. Google Scholar
Digital Library
- Lanman, D., Wetzstein, G., Hirsch, M., Heidrich, W., and Raskar, R. 2011. Polarization Fields: Dynamic Light Field Display using Multi-Layer LCDs. ACM Trans. Graph. (SIGGRAPH Asia) 30, 186:1--186:9. Google Scholar
Digital Library
- Lehtinen, J., Aila, T., Chen, J., Laine, S., and Durand, F. 2011. Temporal Light Field Reconstruction for Rendering Distribution Effects. ACM Trans. Graph. (SIGGRAPH) 30, 4, 55:1--55:12. Google Scholar
Digital Library
- Lehtinen, J., Aila, T., Laine, S., and Durand, F. 2012. Reconstructing the Indirect Light Field for Global Illumination. ACM Trans. Graph. (SIGGRAPH) 31, 4, 51:1--51:10. Google Scholar
Digital Library
- Li, T.-M., Wu, Y.-T., and Chuang, Y.-Y. 2012. SURE-based Optimization for Adaptive Sampling and Reconstruction. ACM Trans. Graph. (SIGGRAPH Asia) 31, 6, 194:1--194:9. Google Scholar
Digital Library
- Lippmann, G. 1908. Épreuves réversibles donnant la sensation du relief. Journal of Physics 7, 4, 821--825.Google Scholar
- Mantiuk, R., Kim, K. J., Rempel, A. G., and Heidrich, W. 2011. HDR-VDP-2: A Calibrated Visual Metric for Visibility and Quality Predictions in all Luminance Conditions. ACM Trans. Graph. (SIGGRAPH) 30, 4, 40:1--40:14. Google Scholar
Digital Library
- Marwah, K., Wetzstein, G., Bando, Y., and Raskar, R. 2013. Compressive Ligth Field Photography using Over-complete Dictionaries and Optimized Projections. ACM Trans. Graph. (SIGGRAPH) 32, 4, 1--11. Google Scholar
Digital Library
- Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., and Teller, E. 1953. Equation of state calculations by fast computing machines. The journal of chemical physics 21, 1087--1092.Google Scholar
- Pharr, M., and Humphreys, G. 2010. Physically based rendering: From theory to implementation. Morgan Kaufmann. Google Scholar
Digital Library
- Sajadi, B., Gopi, M., and Majumder, A. 2012. Edge-guided Resolution Enhancement in Projectors via Optical Pixel Sharing. ACM Trans. Graph. (SIGGRAPH) 31, 4, 79:1--79:122. Google Scholar
Digital Library
- Seetzen, H., Heidrich, W., Stuerzlinger, W., Ward, G., Whitehead, L., Trentacoste, M., Ghosh, A., and Vorozcovs, A. 2004. High Dynamic Range Display Systems. ACM Trans. Graph. (SIGGRAPH) 23, 3, 760--768. Google Scholar
Digital Library
- Sen, P., and Darabi, S. 2011. Compressive Rendering: A Rendering Application of Compressed Sensing. IEEE TVCG 17, 4, 487--499. Google Scholar
Digital Library
- Sen, P., Darabi, S., and Xiao, L. 2011. Compressive Rendering of Multidimensional Scenes. In LNCS "Video Processing and Computational Video", 152--183. Google Scholar
Digital Library
- Soler, C., Subr, K., Durand, F., Holzschuch, N., and Sillion, F. 2009. Fourier Depth of Field. ACM Trans. Graph. 28, 2, 18:1--18:12. Google Scholar
Digital Library
- Trentacoste, M., Heidrich, W., Whitehead, L., Seetzen, H., and Ward, G. 2007. Photometric Image Processing for High Dynamic Range Displays. JVCIR 18, 5, 439--451. Google Scholar
Digital Library
- Veach, E., and Guibas, L. J. 1997. Metropolis Light Transport. In Proc. SIGGRAPH, 65--76. Google Scholar
Digital Library
- Wetzstein, G., Lanman, D., Heidrich, W., and Raskar, R. 2011. Layered 3D: Tomographic Image Synthesis for Attenuation-based Light Field and High Dynamic Range Displays. ACM Trans. Graph. (SIGGRAPH) 30, 95:1--95:11. Google Scholar
Digital Library
- Wetzstein, G., Lanman, D., Hirsch, M., and Raskar, R. 2012. Tensor Displays: Compressive Light Field Synthesis using Multilayer Displays with Directional Backlighting. ACM Trans. Graph. (SIGGRAPH) 31, 80:1--80:11. Google Scholar
Digital Library
- Widrow, B., and Stearns, S. 1985. Adaptive signal processing, vol. 1. Prentice-Hall. Google Scholar
Digital Library
Index Terms
Adaptive image synthesis for compressive displays
Recommendations
Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources
We present a novel design for an optical see-through augmented reality display that offers a wide field of view and supports a compact form factor approaching ordinary eyeglasses. Instead of conventional optics, our design uses only two simple hardware ...
Compressive Light Field Displays
Light fields are the multiview extension of stereo image pairs: a collection of images showing a 3D scene from slightly different perspectives. Depicting high-resolution light fields usually requires an excessively large display bandwidth; compressive ...
Caustic spot light for rendering caustics
It is difficult to render caustic patterns at interactive frame rates. This paper introduces new rendering techniques that relax current constraints, allowing scenes with moving, non-rigid scene objects, rigid caustic objects, and rotating directional ...





Comments