skip to main content
research-article

On the equilibrium of simplicial masonry structures

Published:21 July 2013Publication History
Skip Abstract Section

Abstract

We present a novel approach for the analysis and design of self-supporting simplicial masonry structures. A finite-dimensional formulation of their compressive stress field is derived, offering a new interpretation of thrust networks through numerical homogenization theory. We further leverage geometric properties of the resulting force diagram to identify a set of reduced coordinates characterizing the equilibrium of simplicial masonry. We finally derive computational form-finding tools that improve over previous work in efficiency, accuracy, and scalability.

Skip Supplemental Material Section

Supplemental Material

tp083.mp4

References

  1. Alliez, P., Cohen-Steiner, D., Yvinec, M., and Desbrun, M. 2005. Variational tetrahedral meshing. ACM Trans. Graph. 24, 3 (July), 617--625. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Angelillo, M., Babilio, E., and Fortunato, A. 2012. Singular stress fields for masonry-like vaults. Continuum Mechanics and Thermodynamics, 1--19.Google ScholarGoogle Scholar
  3. Aurenhammer, F., Hoffmann, F., and Aronov, B. 1998. Minkowski-type theorems and least-squares clustering. Algorithmica 20, 1, 61--76.Google ScholarGoogle ScholarCross RefCross Ref
  4. Block, P., and Lachauer, L. 2011. Closest-fit, compression-only solutions for free form shells. In IABSE/IASS London Symposium, Int. Assoc. Shell Spatial Structures.Google ScholarGoogle Scholar
  5. Block, P., and Ochsendorf, J. 2007. Thrust network analysis: A new methodology for three-dimensional equilibrium. J. Int. Assoc. Shell and Spatial Structures 48, 3, 167--173.Google ScholarGoogle Scholar
  6. Block, P. 2009. Thrust Network Analysis: Exploring Three-dimensional Equilibrium. PhD thesis, Department of Architecture, Massachusetts Institute of Technology.Google ScholarGoogle Scholar
  7. CGAL, 2012. Computational Geometry Algorithms Library (release 4.1). http://www.cgal.org.Google ScholarGoogle Scholar
  8. Desbrun, M., Kanso, E., and Tong, Y. 2007. Discrete differential forms for computational modeling. In Discrete Differential Geometry, A. Bobenko and P. Schröder, Eds. Springer.Google ScholarGoogle Scholar
  9. Desbrun, M., Donaldson, R., and Owhadi, H. 2013. Modeling across scales: Discrete geometric structures in homogenization and inverse homogenization. In Multiscale analysis and nonlinear dynamics, M. Z. Pesenson, Ed., vol. 8 of Reviews of Nonlinear Dynamics and Complexity. Wiley.Google ScholarGoogle Scholar
  10. Fisher, M., Schröder, P., Desbrun, M., and Hoppe, H. 2007. Design of tangent vector fields. In Proceedings of ACM SIGGRAPH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Fosdick, R., and Schuler, K. 2003. Generalized Airy stress functions. Meccanica 38, 5, 571--578.Google ScholarGoogle ScholarCross RefCross Ref
  12. Fraternali, F., Angelillo, M., and Fortunato, A. 2002. A lumped stress method for plane elastic problems and the discrete-continuum approximation. International Journal of Solids and Structures 39, 6211--6240.Google ScholarGoogle ScholarCross RefCross Ref
  13. Fraternali, F. 2010. A thrust network approach to the equilibrium problem of unreinforced masonry vaults via polyhedral stress functions. Mechanics Research Communications 37, 2, 198--204.Google ScholarGoogle ScholarCross RefCross Ref
  14. Fraternali, F. 2011. A mixed lumped stress--displacement approach to the elastic problem of masonry walls. Mechanics Research Communications 38, 176--180.Google ScholarGoogle ScholarCross RefCross Ref
  15. Giaquinta, M., and Giusti, E. 1985. Researches on the equilibrium of masonry structures. Archive for Rational Mechanics and Analysis 88, 359--392.Google ScholarGoogle ScholarCross RefCross Ref
  16. Glickenstein, D., 2005. Geometric triangulations and discrete Laplacians on manifolds. arXiv.org:math/0508188.Google ScholarGoogle Scholar
  17. Grady, L. J., and Polimeni, J. R. 2010. Discrete Calculus: Applied Analysis on Graphs for Computational Science. Springer. Google ScholarGoogle ScholarCross RefCross Ref
  18. Green, A., and Zerna, W. 2002. Theoretical Elasticity. Dover.Google ScholarGoogle Scholar
  19. Heyman, J. 1966. The stone skeleton. International Journal of Solids and Structures 2, 2, 249--279.Google ScholarGoogle ScholarCross RefCross Ref
  20. Mercat, C. 2001. Discrete Riemann surfaces and the Ising model. Comm. Math. Phys. 218, 177--216.Google ScholarGoogle ScholarCross RefCross Ref
  21. Mérigot, Q. 2011. A multiscale approach to optimal transport. Computer Graphics Forum 30, 5, 1583--1592.Google ScholarGoogle ScholarCross RefCross Ref
  22. Mullen, P., Memari, P., de Goes, F., and Desbrun, M. 2011. HOT: Hodge-optimized triangulations. ACM Trans. Graph. 30, 4 (July), 103:1--103:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. O'Dwyer, D. 1999. Funicular analysis of masonry vaults. Computers & Structures 73, 1--5, 187--197.Google ScholarGoogle Scholar
  24. Preparata, F. P., and Shamos, M. I. 1985. Computational Geometry: An Introduction. Springer-Verlag. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Tong, Y., Alliez, P., Cohen-Steiner, D., and Desbrun, M. 2006. Designing quadrangulations with discrete harmonic forms. In Symposium on Geometry Processing, 201--210. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Vouga, E., Höbinger, M., Wallner, J., and Pottmann, H. 2012. Design of self-supporting surfaces. ACM Trans. Graph. 31, 4, 87:1--87:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Wächter, A., and Biegler, L. T. 2006. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106, 1, 25--57. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Wardetzky, M., Mathur, S., Kälberer, F., and Grinspun, E. 2007. Discrete Laplace operators: no free lunch. In Symposium on Geometry Processing, 33--37. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Whiting, E., Ochsendorf, J., and Durand, F. 2009. Procedural modeling of structurally-sound masonry buildings. ACM Transactions on Graphics 28, 5, 112:1--112:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Whiting, E., Shin, H., Wang, R., Ochsendorf, J., and Durand, F. 2012. Structural optimization of 3D masonry buildings. ACM Transactions on Graphics 31, 6, 159:1--159:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Wong, Y. W., and Pellegrino, S. 2006. Wrinkled membranes Part II: analytical models. Journal of Mechanics of Materials and Structures 1, 25--59.Google ScholarGoogle ScholarCross RefCross Ref
  32. Zayer, R., Rossl, C., and Seidel, H.-P. 2005. Discrete tensorial quasi-harmonic maps. In Proceedings of Shape Modeling and Applications, 278--287. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. On the equilibrium of simplicial masonry structures

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 32, Issue 4
        July 2013
        1215 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2461912
        Issue’s Table of Contents

        Copyright © 2013 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 21 July 2013
        Published in tog Volume 32, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader