skip to main content
research-article

Learning part-based templates from large collections of 3D shapes

Published:21 July 2013Publication History
Skip Abstract Section

Abstract

As large repositories of 3D shape collections continue to grow, understanding the data, especially encoding the inter-model similarity and their variations, is of central importance. For example, many data-driven approaches now rely on access to semantic segmentation information, accurate inter-model point-to-point correspondence, and deformation models that characterize the model collections. Existing approaches, however, are either supervised requiring manual labeling; or employ super-linear matching algorithms and thus are unsuited for analyzing large collections spanning many thousands of models. We propose an automatic algorithm that starts with an initial template model and then jointly optimizes for part segmentation, point-to-point surface correspondence, and a compact deformation model to best explain the input model collection. As output, the algorithm produces a set of probabilistic part-based templates that groups the original models into clusters of models capturing their styles and variations. We evaluate our algorithm on several standard datasets and demonstrate its scalability by analyzing much larger collections of up to thousands of shapes.

Skip Supplemental Material Section

Supplemental Material

tp048.mp4

References

  1. Amazon, 2012. Amazon mechanical turk, https://www.mturk.com/.Google ScholarGoogle Scholar
  2. Amit, Y., and Trouve, A. 2007. POP: patchwork of parts models for object recognition. IJCV 75, 2, 267--282. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Boykov, Y., Veksler, O., and Zabih, R. 2001. Efficient approximate energy minimization via graph cuts. IEEE transactions on PAMI 20, 12, 1222--1239. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Eslami, S. M. A., and Williams, C. 2012. A generative model for parts-based object segmentation. In NIPS.Google ScholarGoogle Scholar
  5. Felzenszwalb, P. F., and Huttenlocher, D. P. 2005. Pictorial structures for object recognition. IJCV 61, 1, 55--79. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Felzenszwalb, P., Girshick, R., McAllester, D., and Ramanan, D. 2010. Object detection with discriminatively trained part-based models. IEEE PAMI 32, 9 (sept.), 1627--1645. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Fergus, R., Perona, P., and Zisserman, A. 2003. Object class recognition by unsupervised scale-invariant learning. In IEEE CVPR.Google ScholarGoogle Scholar
  8. Fisher, M., Savva, M., and Hanrahan, P. 2011. Characterizing structural relationships in scenes using graph kernels. ACM SIGGRAPH 30, 34:1--34:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Golovinskiy, A., and Funkhouser, T. 2009. Consistent segmentation of 3D models. Proc. SMI 33, 3, 262--269. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Gu, C., and Ren, X. 2010. Discriminative mixture-of-templates for viewpoint classification. In ECCV. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Hu, R., Fan, L., and Liu, L. 2012. Co-segmentation of 3d shapes via subspace clustering. Computer Graphics Forum (Proc. SGP) 31, 5, 1703--1713. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Huang, Q., Koltun, V., and Guibas, L. 2011. Joint shape segmentation with linear programming. In ACM SIGGRAPH Asia, 125:1--125:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Huang, Q.-x., Zhang, G.-X., Gao, L., Hu, S.-M., Butscher, A., and Guibas, L. 2012. An optimization approach for extracting and encoding consistent maps. SIGGRAPH Asia. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Jain, A., Zhong, Y., and Dubuisson-Jolly, M.-P. 1998. Deformable template models: A review. Signal Processing 71, 2, 109--129. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Kalogerakis, E., Hertzmann, A., and Singh, K. 2010. Learning 3D mesh segmentation and labeling. In ACM SIGGRAPH, 102:1--102:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Kalogerakis, E., Chaudhuri, S., Koller, D., and Koltun, V. 2012. A probabilistic model for component-based shape synthesis. SIGGRAPH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Katz, S., and Tal, A. 2003. Hierarchical mesh decomposition using fuzzy clustering and cuts. ACM Trans. Graph. 22, 3, 954--961. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Kim, V. G., Li, W., Mitra, N., DiVerdi, S., and Funkhouser, T. 2012. Exploring collections of 3D models using fuzzy correspondences. Trans. on Graphis (Proc. of SIGGRAPH). Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Kim, Y. M., Mitra, N. J., Yan, D., and Guibas, L. 2012. Acquiring 3d indoor environments with variability and repetition. SIGGRAPH Asia. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Lopez-Sastre, R., Tuytelaars, T., and Savarese, S. 2011. Deformable part models revisited: A performance evaluation for object category pose estimation. In ICCV Workshop on Challenges and Opportunities in Robot Perception.Google ScholarGoogle Scholar
  21. Nan, L., Xie, K., and Sharf, A. 2012. A search-classify approach for cluttered indoor scene understanding. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 31, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Nguyen, A., Ben-Chen, M., Welnicka, K., Ye, Y., and Guibas, L. 2011. An optimization approach to improving collections of shape maps. SGP 30, 5, 1481--1491.Google ScholarGoogle Scholar
  23. Ovsjanikov, M., Li, W., Guibas, L., and Mitra, N. J. 2011. Exploration of continuous variability in collections of 3D shapes. ACM SIGGRAPH 30, 4, 33:1--33:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Shapira, L., Shalom, S., Shamir, A., Cohen-Or, D., and Zhang, H. 2010. Contextual part analogies in 3d objects. IJCV 89, 2-3, 309--326. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Shen, C.-H., Fu, H., Chen, K., and Hu, S.-M. 2012. Structure recovery by part assembly. SIGGRAPH Asia. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Sidi, O., van Kaick, O., Kleiman, Y., Zhang, H., and Cohen-Or, D. 2011. Unsupervised co-segmentation of a set of shapes via descriptor-space spectral clustering. ACM SIGGRAPH Asia 30, 6, 126:1--126:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Sorkine, O., 2007. Least-squares rigid motion using svd, http://igl.ethz.ch/projects/ARAP/svd_rot.pdf.Google ScholarGoogle Scholar
  28. Trimble, 2012. Trimble 3D warehouse, http://sketchup.google.com/3dwarehouse/.Google ScholarGoogle Scholar
  29. van Kaick, O., Tagliasacchi, A., Sidi, O., Zhang, H., Cohen-Or, D., Wolf, L., and Hamarneh, G. 2011. Prior knowledge for part correspondence. CGF Eurographics 30, 2, 553--562.Google ScholarGoogle ScholarCross RefCross Ref
  30. van Kaick, O., Zhang, H., Hamarneh, G., and Cohen-Or, D. 2011. A survey on shape correspondence. CGF 30, 6, 1681--1707.Google ScholarGoogle ScholarCross RefCross Ref
  31. Wang, Y., Asafi, S., van Kaick, O., Zhang, H., Cohen-Or, D., and Chenand, B. 2012. Active co-analysis of a set of shapes. SIGGRAPH Asia. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Weber, M., Welling, M., and Perona, P. 2000. Towards automatic discovery of object categories. In IEEE CVPR.Google ScholarGoogle Scholar
  33. Weber, M., Welling, M., and Perona, P. 2000. Unsupervised learning of models for recognition. In ECCV. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Xu, K., Li, H., Zhang, H., Daniel Cohen-Or, Y. X., and Cheng, Z.-Q. 2010. Style-content separation by anisotropic part scales. SIGGRAPH Asia. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Xu, K., Zhang, H., Cohen-Or, D., and Chen, B. 2012. Fit and diverse: Set evolution for inspiring 3D shape galleries. ACM Trans. on Graph (Proc. of SIGGRAPH) 31. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Zheng, Y., Cohen-Or, D., and Mitra, N. J. 2013. Smart variations: Functional substructures for part compatibility. CGF Eurographics.Google ScholarGoogle Scholar

Index Terms

  1. Learning part-based templates from large collections of 3D shapes

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 32, Issue 4
        July 2013
        1215 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2461912
        Issue’s Table of Contents

        Copyright © 2013 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 21 July 2013
        Published in tog Volume 32, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader