Abstract
We consider the problem of generalizing affine combinations in Euclidean spaces to triangle meshes: computing weighted averages of points on surfaces. We address both the forward problem, namely computing an average of given anchor points on the mesh with given weights, and the inverse problem, which is computing the weights given anchor points and a target point. Solving the forward problem on a mesh enables applications such as splines on surfaces, Laplacian smoothing and remeshing. Combining the forward and inverse problems allows us to define a correspondence mapping between two different meshes based on provided corresponding point pairs, enabling texture transfer, compatible remeshing, morphing and more. Our algorithm solves a single instance of a forward or an inverse problem in a few microseconds. We demonstrate that anchor points in the above applications can be added/removed and moved around on the meshes at interactive framerates, giving the user an immediate result as feedback.
Supplemental Material
Available for Download
Supplemental material.
- Alexa, M. 2002. Linear combination of transformations. ACM Trans. Graph. 21, 3, 380--387. Google Scholar
Digital Library
- Baran, I., Vlasic, D., Grinspun, E., and Popović, J. 2009. Semantic deformation transfer. ACM Trans. Graph. 28, 3. Google Scholar
Digital Library
- Bonneel, N., van de Panne, M., Paris, S., and Heidrich, W. 2011. Displacement interpolation using lagrangian mass transport. ACM Trans. Graph. 30, 6. Google Scholar
Digital Library
- Botsch, M., and Sorkine, O. 2008. On linear variational surface deformation methods. IEEE Trans. Visualization and Computer Graphics 14, 1, 213--230. Google Scholar
Digital Library
- Botsch, M., Steinberg, S., Bischoff, S., and Kobbelt, L. 2002. OpenMesh - a generic and efficient polygon mesh data structure. In Proc. OpenSG Symposium.Google Scholar
- Boubekeur, T., and Alexa, M. 2008. Phong tessellation. ACM Trans. Graph. 27, 5, 141:1--141:5. Google Scholar
Digital Library
- Buss, S. R., and Fillmore, J. P. 2001. Spherical averages and applications to spherical splines and interpolation. ACM Trans. Graph. 20, 2, 95--126. Google Scholar
Digital Library
- Cartan, É. 1929. Groupes simples clos et ouverts et géométrie riemannienne. J. Math. Pures Appl. 8, 1--33.Google Scholar
- Chen, Y., and Medioni, G. 1991. Object modeling by registration of multiple range images. In Proc. IEEE International Conference on Robotics and Automation, 2724--2729.Google Scholar
- Cox, T. F., and Cox, M. A. A. 2000. Multidimensional Scaling, Second Edition. Chapman & Hall/CRC, Sept.Google Scholar
- Crane, K., Weischedel, C., and Wardetzky, M. 2013. Geodesics in heat. ACM Trans. Graph.. to appear.Google Scholar
- de Silva, V., and Tenenbaum, J. B. 2002. Global versus local methods in nonlinear dimensionality reduction. In Proc. NIPS, 705--712.Google Scholar
- Eckstein, I., Surazhsky, V., and Gotsman, C. 2001. Texture mapping with hard constraints. Comput. Graph. Forum 20, 3, 95--104.Google Scholar
Cross Ref
- Floater, M. S. 2003. Mean value coordinates. Computer Aided Geometric Design 20, 1, 19--27. Google Scholar
Digital Library
- Fréchet, M. 1948. Les éléments alétoires de nature quelconque dans un espace distancié. Ann. Inst. H. Poincaré 10, 4, 215--310.Google Scholar
- Hofer, M., and Pottmann, H. 2004. Energy-minimizing splines in manifolds. ACM Trans. Graph. 23, 3, 284--293. Google Scholar
Digital Library
- Hormann, K., and Sukumar, N. 2008. Maximum entropy coordinates for arbitrary polytopes. In Proc. SGP, 1513--1520. Google Scholar
Digital Library
- Hormann, K., Polthier, K., and Sheffer, A. 2008. Mesh parameterization: Theory and practice. In SIGGRAPH ASIA 2008 Course Notes. Google Scholar
Digital Library
- Jin, J., Garland, M., and Ramos, E. A. 2009. MLS-based scalar fields over triangle meshes and their application in mesh processing. In Proc. ACM I3D, 145--153. Google Scholar
Digital Library
- Joshi, P., Meyer, M., DeRose, T., Green, B., and Sanocki, T. 2007. Harmonic coordinates for character articulation. ACM Trans. Graph. 26, 3, 71:1--71:9. Google Scholar
Digital Library
- Ju, T., Schaefer, S., and Warren, J. 2005. Mean value coordinates for closed triangular meshes. ACM Trans. Graph. 24, 3, 561--566. Google Scholar
Digital Library
- Karcher, H. 1977. Riemannian center of mass and mollifier smoothing. Communications on pure and applied mathematics 30, 5, 509--541.Google Scholar
- Kendall, W. 1990. Probability, convexity, and harmonic maps with small image I: uniqueness and fine existence. Proceedings of the London Mathematical Society 3, 2, 371.Google Scholar
- Kim, V. G., Lipman, Y., and Funkhouser, T. 2011. Blended intrinsic maps. ACM Trans. Graph. 30, 4. Google Scholar
Digital Library
- Kobbelt, L., Vorsatz, J., and Seidel, H.-P. 1999. Multiresolution hierarchies on unstructured triangle meshes. Comput. Geom. Theory Appl. 14, 1--3, 5--24. Google Scholar
Digital Library
- Kraevoy, V., and Sheffer, A. 2004. Cross-parameterization and compatible remeshing of 3D models. ACM Trans. Graph. 23, 3, 861--869. Google Scholar
Digital Library
- Langer, T., Belyaev, A., and Seidel, H.-P. 2006. Spherical barycentric coordinates. In Proc. SGP, 81--88. Google Scholar
Digital Library
- Lipman, Y., Kopf, J., Cohen-Or, D., and Levin, D. 2007. GPU-assisted positive mean value coordinates for mesh deformations. In Proc. SGP, 117--124. Google Scholar
Digital Library
- Lipman, Y., Rustamov, R. M., and Funkhouser, T. A. 2010. Biharmonic distance. ACM Trans. Graph. 29, 3. Google Scholar
Digital Library
- Loop, C. 1987. Smooth subdivision surfaces based on triangles. Master's thesis, Department of Mathematics, University of Utah.Google Scholar
- Ovsjanikov, M., Mérigot, Q., Mémoli, F., and Guibas, L. J. 2010. One point isometric matching with the heat kernel. Comput. Graph. Forum 29, 5, 1555--1564.Google Scholar
Cross Ref
- Pálfia, M. 2009. The Riemann barycenter computation and means of several matrices. Int. J. Comput. Math. Sci. 3, 3, 128--133.Google Scholar
- Pennec, X. 1998. Computing the mean of geometric features: Application to the mean rotation. Rapport de Recherche RR--3371, INRIA - Epidaure project, Sophia Antipolis, France, March.Google Scholar
- Phong, B. 1975. Illumination for computer generated pictures. Communications of the ACM 18, 6, 311--317. Google Scholar
Digital Library
- Ritschel, T., Thormählen, T., Dachsbacher, C., Kautz, J., and Seidel, H.-P. 2010. Interactive on-surface signal deformation. ACM Trans. Graph. 29, 4. Google Scholar
Digital Library
- Rustamov, R., Lipman, Y., and Funkhouser, T. 2009. Interior distance using barycentric coordinates. Comput. Graph. Forum 28, 5. Google Scholar
Digital Library
- Rustamov, R. 2010. Barycentric coordinates on surfaces. Comput. Graph. Forum 29, 5, 1507--1516.Google Scholar
Cross Ref
- Sander, P. V., Gu, X., Gortler, S. J., Hoppe, H., and Snyder, J. 2000. Silhouette clipping. In Proc. ACM SIGGRAPH, 327--334. Google Scholar
Digital Library
- Schmidt, R., Grimm, C., and Wyvill, B. 2006. Interactive decal compositing with discrete exponential maps. ACM Trans. Graph. 25, 3, 605--613. Google Scholar
Digital Library
- Schreiner, J., Asirvatham, A., Praun, E., and Hoppe, H. 2004. Inter-surface mapping. ACM Trans. Graph. 23, 3. Google Scholar
Digital Library
- Sethian, J. A. 1996. A fast marching level set method for monotonically advancing fronts. In Proc. Nat. Acad. Sci, 1591--1595.Google Scholar
Cross Ref
- Sorkine, O., and Cohen-Or, D. 2004. Least-squares meshes. In Proc. Shape Modeling International, 191--199. Google Scholar
Digital Library
- Sorkine, O., Cohen-Or, D., Goldenthal, R., and Lischinski, D. 2002. Bounded-distortion piecewise mesh parameterization. In Proc. IEEE Visualization, 355--362. Google Scholar
Digital Library
- Sumner, R. W., and Popović, J. 2004. Deformation transfer for triangle meshes. ACM Trans. Graph. 23, 3, 399--405. Google Scholar
Digital Library
- Surazhsky, V., Surazhsky, T., Kirsanov, D., Gortler, S. J., and Hoppe, H. 2005. Fast exact and approximate geodesics on meshes. ACM Trans. Graph. 24, 3, 553--560. Google Scholar
Digital Library
- Tzur, Y., and Tal, A. 2009. FlexiStickers: Photogrammetric texture mapping using casual images. ACM Trans. Graph. 28, 3. Google Scholar
Digital Library
- Waldron, S. 2011. Affine generalised barycentric coordinates. Jaen Journal on Approximation 3, 2.Google Scholar
- Wallner, J., and Pottmann, H. 2006. Intrinsic subdivision with smooth limits for graphics and animation. ACM Trans. Graph. 25, 2, 356--374. Google Scholar
Digital Library
- Xin, S.-Q., Ying, X., and He, Y. 2012. Constant-time all-pairs geodesic distance query on triangle meshes. In Proc. ACM I3D. Google Scholar
Digital Library
- Yeh, I.-C., Lin, C.-H., Sorkine, O., and Lee, T.-Y. 2011. Template-based 3D model fitting using dual-domain relaxation. IEEE Trans. Vis. Comput. Graph. 17, 8, 1178--1190. Google Scholar
Digital Library
- Zhou, K., Synder, J., Guo, B., and Shum, H.-Y. 2004. Isocharts: stretch-driven mesh parameterization using spectral analysis. In Proc. SGP, ACM, New York, NY, USA, 45--54. Google Scholar
Digital Library
Index Terms
Weighted averages on surfaces
Recommendations
Real-time shell space rendering of volumetric geometry
GRAPHITE '06: Proceedings of the 4th international conference on Computer graphics and interactive techniques in Australasia and Southeast AsiaThis work introduces a new technique for real-time rendering of arbitrary volumetric geometry into a polygonal mesh's shell space. The shell space is a layer of variable thickness on top or below the polygonal mesh. The technique computes view ray shell ...
Improved Specular Highlights With Adaptive Shading
CGI '96: Proceedings of the 1996 Conference on Computer Graphics InternationalGouraud shading and Phong shading are widely used interpolation methods to render a polygon mesh of a curved surface. When an illumination equation has a specular reflection term Phong shading produces more realistic results than Gouraud shading. The ...





Comments