skip to main content
research-article

Weighted averages on surfaces

Published:21 July 2013Publication History
Skip Abstract Section

Abstract

We consider the problem of generalizing affine combinations in Euclidean spaces to triangle meshes: computing weighted averages of points on surfaces. We address both the forward problem, namely computing an average of given anchor points on the mesh with given weights, and the inverse problem, which is computing the weights given anchor points and a target point. Solving the forward problem on a mesh enables applications such as splines on surfaces, Laplacian smoothing and remeshing. Combining the forward and inverse problems allows us to define a correspondence mapping between two different meshes based on provided corresponding point pairs, enabling texture transfer, compatible remeshing, morphing and more. Our algorithm solves a single instance of a forward or an inverse problem in a few microseconds. We demonstrate that anchor points in the above applications can be added/removed and moved around on the meshes at interactive framerates, giving the user an immediate result as feedback.

Skip Supplemental Material Section

Supplemental Material

tp101.mp4

References

  1. Alexa, M. 2002. Linear combination of transformations. ACM Trans. Graph. 21, 3, 380--387. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Baran, I., Vlasic, D., Grinspun, E., and Popović, J. 2009. Semantic deformation transfer. ACM Trans. Graph. 28, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bonneel, N., van de Panne, M., Paris, S., and Heidrich, W. 2011. Displacement interpolation using lagrangian mass transport. ACM Trans. Graph. 30, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Botsch, M., and Sorkine, O. 2008. On linear variational surface deformation methods. IEEE Trans. Visualization and Computer Graphics 14, 1, 213--230. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Botsch, M., Steinberg, S., Bischoff, S., and Kobbelt, L. 2002. OpenMesh - a generic and efficient polygon mesh data structure. In Proc. OpenSG Symposium.Google ScholarGoogle Scholar
  6. Boubekeur, T., and Alexa, M. 2008. Phong tessellation. ACM Trans. Graph. 27, 5, 141:1--141:5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Buss, S. R., and Fillmore, J. P. 2001. Spherical averages and applications to spherical splines and interpolation. ACM Trans. Graph. 20, 2, 95--126. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Cartan, É. 1929. Groupes simples clos et ouverts et géométrie riemannienne. J. Math. Pures Appl. 8, 1--33.Google ScholarGoogle Scholar
  9. Chen, Y., and Medioni, G. 1991. Object modeling by registration of multiple range images. In Proc. IEEE International Conference on Robotics and Automation, 2724--2729.Google ScholarGoogle Scholar
  10. Cox, T. F., and Cox, M. A. A. 2000. Multidimensional Scaling, Second Edition. Chapman & Hall/CRC, Sept.Google ScholarGoogle Scholar
  11. Crane, K., Weischedel, C., and Wardetzky, M. 2013. Geodesics in heat. ACM Trans. Graph.. to appear.Google ScholarGoogle Scholar
  12. de Silva, V., and Tenenbaum, J. B. 2002. Global versus local methods in nonlinear dimensionality reduction. In Proc. NIPS, 705--712.Google ScholarGoogle Scholar
  13. Eckstein, I., Surazhsky, V., and Gotsman, C. 2001. Texture mapping with hard constraints. Comput. Graph. Forum 20, 3, 95--104.Google ScholarGoogle ScholarCross RefCross Ref
  14. Floater, M. S. 2003. Mean value coordinates. Computer Aided Geometric Design 20, 1, 19--27. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Fréchet, M. 1948. Les éléments alétoires de nature quelconque dans un espace distancié. Ann. Inst. H. Poincaré 10, 4, 215--310.Google ScholarGoogle Scholar
  16. Hofer, M., and Pottmann, H. 2004. Energy-minimizing splines in manifolds. ACM Trans. Graph. 23, 3, 284--293. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Hormann, K., and Sukumar, N. 2008. Maximum entropy coordinates for arbitrary polytopes. In Proc. SGP, 1513--1520. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Hormann, K., Polthier, K., and Sheffer, A. 2008. Mesh parameterization: Theory and practice. In SIGGRAPH ASIA 2008 Course Notes. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Jin, J., Garland, M., and Ramos, E. A. 2009. MLS-based scalar fields over triangle meshes and their application in mesh processing. In Proc. ACM I3D, 145--153. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Joshi, P., Meyer, M., DeRose, T., Green, B., and Sanocki, T. 2007. Harmonic coordinates for character articulation. ACM Trans. Graph. 26, 3, 71:1--71:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Ju, T., Schaefer, S., and Warren, J. 2005. Mean value coordinates for closed triangular meshes. ACM Trans. Graph. 24, 3, 561--566. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Karcher, H. 1977. Riemannian center of mass and mollifier smoothing. Communications on pure and applied mathematics 30, 5, 509--541.Google ScholarGoogle Scholar
  23. Kendall, W. 1990. Probability, convexity, and harmonic maps with small image I: uniqueness and fine existence. Proceedings of the London Mathematical Society 3, 2, 371.Google ScholarGoogle Scholar
  24. Kim, V. G., Lipman, Y., and Funkhouser, T. 2011. Blended intrinsic maps. ACM Trans. Graph. 30, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Kobbelt, L., Vorsatz, J., and Seidel, H.-P. 1999. Multiresolution hierarchies on unstructured triangle meshes. Comput. Geom. Theory Appl. 14, 1--3, 5--24. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Kraevoy, V., and Sheffer, A. 2004. Cross-parameterization and compatible remeshing of 3D models. ACM Trans. Graph. 23, 3, 861--869. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Langer, T., Belyaev, A., and Seidel, H.-P. 2006. Spherical barycentric coordinates. In Proc. SGP, 81--88. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Lipman, Y., Kopf, J., Cohen-Or, D., and Levin, D. 2007. GPU-assisted positive mean value coordinates for mesh deformations. In Proc. SGP, 117--124. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Lipman, Y., Rustamov, R. M., and Funkhouser, T. A. 2010. Biharmonic distance. ACM Trans. Graph. 29, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Loop, C. 1987. Smooth subdivision surfaces based on triangles. Master's thesis, Department of Mathematics, University of Utah.Google ScholarGoogle Scholar
  31. Ovsjanikov, M., Mérigot, Q., Mémoli, F., and Guibas, L. J. 2010. One point isometric matching with the heat kernel. Comput. Graph. Forum 29, 5, 1555--1564.Google ScholarGoogle ScholarCross RefCross Ref
  32. Pálfia, M. 2009. The Riemann barycenter computation and means of several matrices. Int. J. Comput. Math. Sci. 3, 3, 128--133.Google ScholarGoogle Scholar
  33. Pennec, X. 1998. Computing the mean of geometric features: Application to the mean rotation. Rapport de Recherche RR--3371, INRIA - Epidaure project, Sophia Antipolis, France, March.Google ScholarGoogle Scholar
  34. Phong, B. 1975. Illumination for computer generated pictures. Communications of the ACM 18, 6, 311--317. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Ritschel, T., Thormählen, T., Dachsbacher, C., Kautz, J., and Seidel, H.-P. 2010. Interactive on-surface signal deformation. ACM Trans. Graph. 29, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Rustamov, R., Lipman, Y., and Funkhouser, T. 2009. Interior distance using barycentric coordinates. Comput. Graph. Forum 28, 5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Rustamov, R. 2010. Barycentric coordinates on surfaces. Comput. Graph. Forum 29, 5, 1507--1516.Google ScholarGoogle ScholarCross RefCross Ref
  38. Sander, P. V., Gu, X., Gortler, S. J., Hoppe, H., and Snyder, J. 2000. Silhouette clipping. In Proc. ACM SIGGRAPH, 327--334. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Schmidt, R., Grimm, C., and Wyvill, B. 2006. Interactive decal compositing with discrete exponential maps. ACM Trans. Graph. 25, 3, 605--613. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Schreiner, J., Asirvatham, A., Praun, E., and Hoppe, H. 2004. Inter-surface mapping. ACM Trans. Graph. 23, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Sethian, J. A. 1996. A fast marching level set method for monotonically advancing fronts. In Proc. Nat. Acad. Sci, 1591--1595.Google ScholarGoogle ScholarCross RefCross Ref
  42. Sorkine, O., and Cohen-Or, D. 2004. Least-squares meshes. In Proc. Shape Modeling International, 191--199. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Sorkine, O., Cohen-Or, D., Goldenthal, R., and Lischinski, D. 2002. Bounded-distortion piecewise mesh parameterization. In Proc. IEEE Visualization, 355--362. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Sumner, R. W., and Popović, J. 2004. Deformation transfer for triangle meshes. ACM Trans. Graph. 23, 3, 399--405. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Surazhsky, V., Surazhsky, T., Kirsanov, D., Gortler, S. J., and Hoppe, H. 2005. Fast exact and approximate geodesics on meshes. ACM Trans. Graph. 24, 3, 553--560. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Tzur, Y., and Tal, A. 2009. FlexiStickers: Photogrammetric texture mapping using casual images. ACM Trans. Graph. 28, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Waldron, S. 2011. Affine generalised barycentric coordinates. Jaen Journal on Approximation 3, 2.Google ScholarGoogle Scholar
  48. Wallner, J., and Pottmann, H. 2006. Intrinsic subdivision with smooth limits for graphics and animation. ACM Trans. Graph. 25, 2, 356--374. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Xin, S.-Q., Ying, X., and He, Y. 2012. Constant-time all-pairs geodesic distance query on triangle meshes. In Proc. ACM I3D. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Yeh, I.-C., Lin, C.-H., Sorkine, O., and Lee, T.-Y. 2011. Template-based 3D model fitting using dual-domain relaxation. IEEE Trans. Vis. Comput. Graph. 17, 8, 1178--1190. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Zhou, K., Synder, J., Guo, B., and Shum, H.-Y. 2004. Isocharts: stretch-driven mesh parameterization using spectral analysis. In Proc. SGP, ACM, New York, NY, USA, 45--54. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Weighted averages on surfaces
            Index terms have been assigned to the content through auto-classification.

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in

            Full Access

            • Published in

              cover image ACM Transactions on Graphics
              ACM Transactions on Graphics  Volume 32, Issue 4
              July 2013
              1215 pages
              ISSN:0730-0301
              EISSN:1557-7368
              DOI:10.1145/2461912
              Issue’s Table of Contents

              Copyright © 2013 ACM

              Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

              Publisher

              Association for Computing Machinery

              New York, NY, United States

              Publication History

              • Published: 21 July 2013
              Published in tog Volume 32, Issue 4

              Permissions

              Request permissions about this article.

              Request Permissions

              Check for updates

              Qualifiers

              • research-article

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader