Abstract
We introduce InfraStructs, material-based tags that embed information inside digitally fabricated objects for imaging in the Terahertz region. Terahertz imaging can safely penetrate many common materials, opening up new possibilities for encoding hidden information as part of the fabrication process. We outline the design, fabrication, imaging, and data processing steps to fabricate information inside physical objects. Prototype tag designs are presented for location encoding, pose estimation, object identification, data storage, and authentication. We provide detailed analysis of the constraints and performance considerations for designing InfraStruct tags. Future application scenarios range from production line inventory, to customized game accessories, to mobile robotics.
Supplemental Material
Available for Download
Supplemental material.
- Alexa, M., and Matusik, W. 2010. Reliefs as images. ACM Trans. Graph. 29, 4, 60:1--60:7. Google Scholar
Digital Library
- Aliaga, D. G., and Atallah, M. J. 2009. Genuinity signatures: Designing signatures for verifying 3d object genuinity. In Proc. EUROGRAPHICS, 437--446.Google Scholar
- Armstrong, C. M., 2012. The truth about terahertz, September. http://spectrum.ieee.org/aerospace/military/the-truth-about-terahertz.Google Scholar
- Auston, D. H., and Cheung, K. P. 1985. Coherent time-domain far-infrared spectroscopy. J. Optical Society of America B 2, 4, 606--612.Google Scholar
Cross Ref
- Bächer, M., Bickel, B., James, D. L., and Pfister, H. 2012. Fabricating articulated characters from skinned meshes. ACM Trans. Graph. 31, 4, 47:1--47:9. Google Scholar
Digital Library
- Bernier, M., Garet, F., Perret, E., Duvillaret, L., and Tedjini, S. 2011. Terahertz encoding approach for secured chipless radio frequency identification. Appl. Opt. 50, 23, 4648--4655.Google Scholar
Cross Ref
- Berry, E., Walker, G. C., Fitzgerald, A. J., Zinov ev, N. N., Chamberlain, M., Smye, S. W., Miles, R. E., and Smith, M. A. 2003. Do in vivo terahertz imaging systems comply with safety guidelines? J. Laser Applications 15, 3, 192--198.Google Scholar
Cross Ref
- Bickel, B., Bächer, M., Otaduy, M. A., Lee, H. R., Pfister, H., Gross, M., and Matusik, W. 2010. Design and fabrication of materials with desired deformation behavior. ACM Trans. Graph. 29, 4, 63:1--63:10. Google Scholar
Digital Library
- Chan, W. L., Deibel, J., and Mittleman, D. M. 2007. Imaging with terahertz radiation. Reports on Progress in Physics 70, 8, 1325--1379.Google Scholar
Cross Ref
- Chao, Y.-L., and Aliaga, D. G. 2013. Hiding a second appearance in a physical relief surface. In Information Hiding, M. Kirchner and D. Ghosal, Eds., vol. 7692 of Lecture Notes in Computer Science. Springer, 94--109. Google Scholar
Digital Library
- Ferguson, B., and Abbott, D. 2001. De-noising techniques for terahertz responses of biological samples. Microelectronics Journal 32, 12, 943--953.Google Scholar
Cross Ref
- Hashemi, H. 1993. The indoor radio propagation channel. Proc. IEEE 81, 7, 943--968.Google Scholar
Cross Ref
- Hašan, M., Fuchs, M., Matusik, W., Pfister, H., and Rusinkiewicz, S. 2010. Physical reproduction of materials with specified subsurface scattering. ACM Trans. Graph. 29, 4, 61:1--61:10. Google Scholar
Digital Library
- Hightower, J., Boriello, G., and Want, R. 2000. Spoton: An indoor 3d location sensing technology based on RF signal strength. CSE Report 2000-02-02, University of Washington.Google Scholar
- Huang, D., LaRocca, T., Chang, M.-C., Samoska, L., Fung, A., Campbell, R., and Andrews, M. 2008. Terahertz CMOS frequency generator using linear superposition technique. IEEE J. Solid-State Circuits 43, 12, 2730--2738.Google Scholar
Cross Ref
- Kato, H., and Tan, K. 2007. Pervasive 2d barcodes for camera phone applications. IEEE Pervasive Computing 6, 4, 76--85. Google Scholar
Digital Library
- Kleine-Ostmann, T., Knobloch, P., Koch, M., Hoffmann, S., Breede, M., Hofmann, M., Hein, G., Pierz, K., Sperling, M., and Donhuijsen, K. 2001. Continuous-wave thz imaging. Electronics Letters 37, 24, 1461--1463.Google Scholar
Cross Ref
- Liu, H.-B., Chen, Y., Bastiaans, G. J., and Zhang, X.-C. 2006. Detection and identification of explosive rdx by thz diffuse reflection spectroscopy. Optics Express 14, 1, 415--423.Google Scholar
Cross Ref
- Lopes, A. J., MacDonald, E., and Wicker, R. B. 2012. Integrating stereolithography and direct print technologies for 3d structural electronics fabrication. Rapid Prototyping Journal 18, 2, 129--143.Google Scholar
Cross Ref
- MacKay, D. J. 2003. Information Theory, Inference, and Learning Algorithms. Cambridge University Press. Google Scholar
Digital Library
- Mohan, A., Woo, G., Hiura, S., Smithwick, Q., and Raskar, R. 2009. Bokode: imperceptible visual tags for camera based interaction from a distance. ACM Trans. Graph. 28, 3, 98:1--98:8. Google Scholar
Digital Library
- Nakazato, Y., Kanbara, M., and Yokoya, N. 2008. Localization system for large indoor environments using invisible markers. In Proc. VRST, ACM, 295--296. Google Scholar
Digital Library
- Orlando, A. R., and Gallerano, G. P. 2009. Terahertz radiation effects and biological applications. J. Infrared, Millimeter and Terahertz Waves 30, 1308--1318.Google Scholar
- Pappu, R., Recht, B., Taylor, J., and Gershenfeld, N. 2002. Physical one-way functions. Science 297, 5589, 2026--2030.Google Scholar
- Park, H., and Park, J.-I. 2004. Invisible marker tracking for AR. In Proc. ISMAR, IEEE, 272--273. Google Scholar
Digital Library
- Raskar, R., Beardsley, P., van Baar, J., Wang, Y., Dietz, P., Lee, J., Leigh, D., and Willwacher, T. 2004. RFIG lamps: Interacting with a self-describing world via photosensing wireless tags and projectors. ACM Trans. Graph. 23, 3, 406--415. Google Scholar
Digital Library
- Salvi, J., Pagès, J., and Batlle, J. 2004. Pattern codification strategies in structured light systems. Pattern Recognition 37, 4, 827--849.Google Scholar
- Sherry, H., Grzyb, J., Zhao, Y., Al Hadi, R., Cathelin, A., Kaiser, A., and Pfeiffer, U. 2012. A 1kpixel CMOS camera chip for 25fps real-time terahertz imaging applications. In Proc. ISSCC '12, IEEE, 252--254.Google Scholar
- Stava, O., Vanek, J., Benes, B., Carr, N., and Měch, R. 2012. Stress relief: improving structural strength of 3d printable objects. ACM Trans. Graph. 31, 4, 48:1--48:11. Google Scholar
Digital Library
- Subramanian, V., Frechet, J., Chang, P., Huang, D., Lee, J., Molesa, S., Murphy, A., Redinger, D., and Volkman, S. 2005. Progress toward development of all-printed RFID tags: Materials, processes, and devices. Proc. IEEE 93, 7, 1330--1338.Google Scholar
Cross Ref
- Tonouchi, M. 2007. Cutting-edge terahertz technology. Nature Photonics 1, 2, 97--105.Google Scholar
Cross Ref
- Velten, A., Willwacher, T., Gupta, O., Veeraraghavan, A., Bawendi, M. G., and Raskar, R. 2012. Recovering three-dimensional shape around a corner using ultrafast time-offlight imaging. Nature Communications 3.Google Scholar
- Wang, S., and Zhang, X.-C. 2004. Pulsed terahertz tomography. Journal of Physics D: Applied Physics 37, 4, R1.Google Scholar
Cross Ref
- Weiser, M. 1993. Ubiquitous computing. IEEE Computer 26, 10, 71--72. Google Scholar
Digital Library
- Weyrich, T., Peers, P., Matusik, W., and Rusinkiewicz, S. 2009. Fabricating microgeometry for custom surface reflectance. ACM Trans. Graph. 28, 3, 32:1--32:6. Google Scholar
Digital Library
- Willis, K. D. D., Brockmeyer, E., Hudson, S. E., and Poupyrev, I. 2012. Printed Optics: 3D printing of embedded optical elements for interactive devices. In Proc. UIST '12, ACM, 589--598. Google Scholar
Digital Library
- Yang, Y., and Fathy, A. 2005. See-through-wall imaging using ultra wideband short-pulse radar system. In Proc. Antennas and Propagation Soc. Int. Symp., vol. 3B, IEEE, 334--337.Google Scholar
- Yang, L., Rida, A., Vyas, R., and Tentzeris, M. 2007. RFID tag and RF structures on a paper substrate using inkjet-printing technology. IEEE Trans. Microwave Theory and Techniques 55, 12, 2894--2901.Google Scholar
Cross Ref
Index Terms
InfraStructs: fabricating information inside physical objects for imaging in the terahertz region
Recommendations
Modified Hexagonal Shaped Ultra-Wideband THz Antenna
CNIOT '23: Proceedings of the 2023 4th International Conference on Computing, Networks and Internet of ThingsA Modified Hexagon-shaped ultra-wideband THz antenna is designed with a 40μm polyimide substrate material which has a dielectric constant of 3.5 and dielectric loss tangent of 0.0027. Power from the source is coupled to the patch using a thin microstrip ...
A graphene-based multiband antipodal Vivaldi nanoantenna for UWB applications
AbstractThe design and optimization of an antipodal Vivaldi antenna using graphene material for ultra-wideband applications are described. A frequency-reconfigurable graphene antipodal Vivaldi antenna operating in the terahertz band is designed on a ...
Enhancement of the frequency peak of terahertz photoconductive antennas using metamaterial (MTM) superstrate structures
AbstractA new design based on a metamaterial superstrate structure for THz photoconductive antennas is reported herein. To enhance the THz output frequency peaks, the use of metamaterials on THz photoconductive antennas is proposed, and simulated by using ...





Comments