skip to main content
research-article
Open Access

Modular flux transfer: efficient rendering of high-resolution volumes with repeated structures

Published:21 July 2013Publication History
Skip Abstract Section

Abstract

The highest fidelity images to date of complex materials like cloth use extremely high-resolution volumetric models. However, rendering such complex volumetric media is expensive, with brute-force path tracing often the only viable solution. Fortunately, common volumetric materials (fabrics, finished wood, synthesized solid textures) are structured, with repeated patterns approximated by tiling a small number of exemplar blocks. In this paper, we introduce a precomputation-based rendering approach for such volumetric media with repeated structures based on a modular transfer formulation. We model each exemplar block as a voxel grid and precompute voxel-to-voxel, patch-to-patch, and patch-to-voxel flux transfer matrices. At render time, when blocks are tiled to produce a high-resolution volume, we accurately compute low-order scattering, with modular flux transfer used to approximate higher-order scattering. We achieve speedups of up to 12× over path tracing on extremely complex volumes, with minimal loss of quality. In addition, we demonstrate that our approach outperforms photon mapping on these materials.

Skip Supplemental Material Section

Supplemental Material

tp126.mp4

References

  1. Arbree, A., Walter, B., and Bala, K. 2011. Heterogeneous subsurface scattering using the finite element method. IEEE Transactions on Visualization and Computer Graphics 17, 7, 956--969. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Arnaldi, B., Pueyo, X., and Vilaplana, J. 1994. On the division of environments by virtual walls for radiosity computation. In Photorealistic Rendering in Computer Graphics. Springer, 198--205.Google ScholarGoogle Scholar
  3. Bekaert, P. 1999. Hierarchical and stochastic algorithms for radiosity. PhD thesis, Katholieke Universiteit Leuven.Google ScholarGoogle Scholar
  4. D'Eon, E., and Irving, G. 2011. A quantized-diffusion model for rendering translucent materials. ACM Trans. Graph. 30, 4, 56:1--56:14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Donner, C., and Jensen, H. W. 2005. Light diffusion in multi-layered translucent materials. ACM Trans. Graph. 24, 3, 1032--1039. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Donner, C., and Jensen, H. W. 2007. Rendering translucent materials using photon diffusion. In Proceedings of the 18th Eurographics conference on Rendering Techniques, Eurographics Association, 243--251. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Fattal, R. 2009. Participating media illumination using light propagation maps. ACM Trans. Graph. 28, 1, 7:1--7:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Forsythe, G., and Leibler, R. 1950. Matrix inversion by a monte carlo method. Mathematical Tables and Other Aids to Computation, 127--129.Google ScholarGoogle Scholar
  9. Jakob, W., Arbree, A., Moon, J. T., Bala, K., and Marschner, S. 2010. A radiative transfer framework for rendering materials with anisotropic structure. ACM Trans. Graph. 29, 4, 53:1--53:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Jakob, W., 2010. Mitsuba renderer. http://mitsuba-renderer.org.Google ScholarGoogle Scholar
  11. Jarosz, W., Nowrouzezahrai, D., Sadeghi, I., and Jensen, H. W. 2011. A comprehensive theory of volumetric radiance estimation using photon points and beams. ACM Trans. Graph. 30, 1, 5:1--5:19. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Jensen, H. W., and Christensen, P. H. 1998. Efficient simulation of light transport in scences with participating media using photon maps. In Proceedings of the 25th annual conference on Computer graphics and interactive techniques, ACM, 311--320. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Jensen, H. W., Marschner, S. R., Levoy, M., and Hanrahan, P. 2001. A practical model for subsurface light transport. In Proceedings of the 28th annual conference on Computer graphics and interactive techniques, ACM, 511--518. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Kajiya, J. T., and Von Herzen, B. P. 1984. Ray tracing volume densities. SIGGRAPH Comput. Graph. 18, 165--174. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Kopf, J., Fu, C.-W., Cohen-Or, D., Deussen, O., Lischinski, D., and Wong, T.-T. 2007. Solid texture synthesis from 2D exemplars. ACM Trans. Graph. 26, 3, 2:1--2:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Lensch, H., Goesele, M., Bekaert, P., Kautz, J., Magnor, M., Lang, J., and Seidel, H. 2003. Interactive rendering of translucent objects. In Computer Graphics Forum, vol. 22, 195--205.Google ScholarGoogle ScholarCross RefCross Ref
  17. Lewis, R. R., and Fournier, A. 1996. Light-driven global illumination with a wavelet representation of light transport. In In Seventh Eurographics Workshop on Rendering, Springer, 11--20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Loos, B. J., Antani, L., Mitchell, K., Nowrouzezahrai, D., Jarosz, W., and Sloan, P.-P. 2011. Modular radiance transfer. ACM Trans. Graph. 30, 6, 178:1--178:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Marschner, S. R., Westin, S. H., Arbree, A., and Moon, J. T. 2005. Measuring and modeling the appearance of finished wood. ACM Trans. Graph. 24, 3, 727--734. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Moon, J. T., and Marschner, S. R. 2006. Simulating multiple scattering in hair using a photon mapping approach. ACM Trans. Graph. 25, 1067--1074. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Moon, J. T., Walter, B., and Marschner, S. R. 2007. Rendering discrete random media using precomputed scattering solutions. In Proceedings of the 18th Eurographics conference on Rendering Techniques, Eurographics Association, 231--242. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Moon, J. T., Walter, B., and Marschner, S. 2008. Efficient multiple scattering in hair using spherical harmonics. ACM Trans. Graph. 27, 3, 31:1--31:7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Narasimhan, S. G., and Nayar, S. K. 2003. Shedding light on the weather. In Proceedings of the 2003 IEEE computer society conference on Computer vision and pattern recognition, IEEE Computer Society, 665--672. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Pauly, M., Kollig, T., and Keller, A. 2000. Metropolis light transport for participating media. In Proceedings of the Eurographics Workshop on Rendering Techniques 2000, 11--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Porumbescu, S. D., Budge, B., Feng, L., and Joy, K. I. 2005. Shell maps. ACM Trans. Graph. 24, 3, 626--633. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Premože, S., Ashikhmin, M., Tessendorf, J., Ramamoorthi, R., and Nayar, S. 2004. Practical rendering of multiple scattering effects in participating media. In Proceedings of the Fifteenth Eurographics conference on Rendering Techniques, Eurographics Association, 363--374. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Rushmeier, H. E., and Torrance, K. E. 1987. The zonal method for calculating light intensities in the presence of a participating medium. SIGGRAPH Comput. Graph. 21, 4, 293--302. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Schroder, K., Klein, R., and Zinke, A. 2011. A volumetric approach to predictive rendering of fabrics. Comput. Graph. Forum 30, 4, 1277--1286.Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Veach, E. 1997. Robust Monte Carlo Methods for Light Transport Simulation. PhD thesis, Stanford University. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Walter, B., Khungurn, P., and Bala, K. 2012. Bidirectional lightcuts. ACM Trans. Graph. 31, 4, 59:1--59:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Wang, J., Zhao, S., Tong, X., Lin, S., Lin, Z., Dong, Y., Guo, B., and Shum, H.-Y. 2008. Modeling and rendering of heterogeneous translucent materials using the diffusion equation. ACM Trans. Graph. 27, 1, 1--18. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Xu, H., Peng, Q.-S., and Liang, Y.-D. 1990. Accelerated radiosity method for complex environments. Computers & Graphics 14, 1, 65--71.Google ScholarGoogle ScholarCross RefCross Ref
  33. Xu, Y.-Q., Chen, Y., Lin, S., Zhong, H., Wu, E., Guo, B., and Shum, H.-Y. 2001. Photorealistic rendering of knitwear using the lumislice. In Proceedings of the 28th annual conference on Computer graphics and interactive techniques, ACM, 391--398. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Zhao, S., Jakob, W., Marschner, S., and Bala, K. 2011. Building volumetric appearance models of fabric using micro CT imaging. ACM Trans. Graph. 30, 4, 44:1--44:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Zhao, S., Jakob, W., Marschner, S., and Bala, K. 2012. Structure-aware synthesis for predictive woven fabric appearance. ACM Trans. Graph. 31, 4, 75:1--75:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Zinke, A., Yuksel, C., Weber, A., and Keyser, J. 2008. Dual scattering approximation for fast multiple scattering in hair. ACM Trans. Graph. 27, 3, 32:1--32:10. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Modular flux transfer: efficient rendering of high-resolution volumes with repeated structures

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 32, Issue 4
        July 2013
        1215 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2461912
        Issue’s Table of Contents

        Copyright © 2013 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 21 July 2013
        Published in tog Volume 32, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader