skip to main content
research-article

Gradient-domain metropolis light transport

Published:21 July 2013Publication History
Skip Abstract Section

Abstract

We introduce a novel Metropolis rendering algorithm that directly computes image gradients, and reconstructs the final image from the gradients by solving a Poisson equation. The reconstruction is aided by a low-fidelity approximation of the image computed during gradient sampling. As an extension of path-space Metropolis light transport, our algorithm is well suited for difficult transport scenarios. We demonstrate that our method outperforms the state-of-the-art in several well-known test scenes. Additionally, we analyze the spectral properties of gradient-domain sampling, and compare it to the traditional image-domain sampling.

Skip Supplemental Material Section

Supplemental Material

tp064.mp4

References

  1. Bhat, P., Zitnick, L., Cohen, M., and Curless, B. 2010. GradientShop: A gradient-domain optimization framework for image and video filtering. ACM Trans. Graph. 29, 2, 10:1--10:14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Bolin, M. R., and Meyer, G. W. 1995. A frequency based ray tracer. In Proc. ACM SIGGRAPH 95, 409--418. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Cline, D., Talbot, J., and Egbert, P. 2005. Energy redistribution path tracing. ACM Trans. Graph. 24, 3, 1186--1195. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Dayal, A., Woolley, C., Watson, B., and Luebke, D. 2005. Adaptive frameless rendering. In Proc. Eurographics Symposium on Rendering 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Egan, K., Tseng, Y., Holzschuch, N., Durand, F., and Ramamoorthi, R. 2009. Frequency analysis and sheared reconstruction for rendering motion blur. ACM Trans. Graph. 28, 3, 93:1--93:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Georgiev, T. 2005. Image reconstruction invariant to relighting. In Proc. Eurographics 2005, 61--64.Google ScholarGoogle Scholar
  7. Hachisuka, T., Jarosz, W., Weistroffer, R. P., Dale, K., Humphreys, G., Zwicker, M., and Jensen, H. W. 2008. Multidimensional adaptive sampling and reconstruction for ray tracing. ACM Trans. Graph. 27, 3, 33:1--33:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Hastings, W. 1970. Monte Carlo samping methods using Markov chains and their applications. Biometrika 57, 1, 97--109.Google ScholarGoogle ScholarCross RefCross Ref
  9. Hoberock, J., and Hart, J. C. 2010. Arbitrary importance functions for Metropolis light transport. Comput. Graph. Forum 29, 6, 1993--2003.Google ScholarGoogle ScholarCross RefCross Ref
  10. Jakob, W., and Marschner, S. 2012. Manifold exploration: A Markov Chain Monte Carlo technique for rendering scenes with difficult specular transport. ACM Trans. Graph. 31, 4, 58:1--58:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Jakob, W., 2012. Mitsuba v0.4. http://mitsuba-renderer.org.Google ScholarGoogle Scholar
  12. Kelemen, C., Szirmay-Kalos, L., Antal, G., and Csonka, F. 2002. A simple and robust mutation strategy for the Metropolis light transport algorithm. Comput. Graph. Forum 21, 3, 531--540.Google ScholarGoogle ScholarCross RefCross Ref
  13. Levin, A., Zomet, A., Peleg, S., and Weiss, Y. 2004. Seamless image stitching in the gradient domain. In Proc. European Conference on Computer Vision (ECCV), 377--389.Google ScholarGoogle Scholar
  14. MacKay, D. J. 2003. Information Theory, Inference, and Learning Algorithms. Cambridge University Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. 1953. Equation of state calculations by fast computing machines. Journal of Chemical Physics 21, 1087--1092.Google ScholarGoogle Scholar
  16. Overbeck, R., Donner, C., and Ramamoorthi, R. 2009. Adaptive wavelet rendering. ACM Trans. Graph. 28, 5, 140:1--140:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Pérez, P., Gangnet, M., and Blake, A. 2003. Poisson image editing. ACM Trans. Graph. 22, 3, 313--318. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Ramamoorthi, R., Mahajan, D., and Belhumeur, P. 2007. A first-order analysis of lighting, shading, and shadows. ACM Trans. Graph. 26, 1, 2:1--2:21. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Rousselle, F., Knaus, C., and Zwicker, M. 2011. Adaptive sampling and reconstruction using greedy error minimization. ACM Trans. Graph. 30, 6, 159:1--159:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Ruderman, D. 1994. The statistics of natural images. Network: computation in neural systems 5, 4, 517--548.Google ScholarGoogle Scholar
  21. Soler, C., Subr, K., Durand, F., Holzschuch, N., and Sillion, F. 2009. Fourier depth of field. ACM Trans. Graph. 28, 2, 18:1--18:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Tumblin, J., Agrawal, A., and Raskar, R. 2005. Why I want a gradient camera. In Proc. CVPR'05, 103--110. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Veach, E., and Guibas, L. J. 1997. Metropolis light transport. In Proc. ACM SIGGRAPH 97, 65--76. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Ward, G. J., and Heckbert, P. 1992. Irradiance gradients. In Proc. Eurographics Workshop on Rendering '92.Google ScholarGoogle Scholar

Index Terms

  1. Gradient-domain metropolis light transport

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 32, Issue 4
        July 2013
        1215 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2461912
        Issue’s Table of Contents

        Copyright © 2013 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 21 July 2013
        Published in tog Volume 32, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader