skip to main content
research-article

Two-layer sparse compression of dense-weight blend skinning

Published:21 July 2013Publication History
Skip Abstract Section

Abstract

Weighted linear interpolation has been widely used in many skinning techniques including linear blend skinning, dual quaternion blend skinning, and cage based deformation. To speed up performance, these skinning models typically employ a sparseness constraint, in which each 3D model vertex has a small fixed number of non-zero weights. However, the sparseness constraint also imposes certain limitations to skinning models and their various applications. This paper introduces an efficient two-layer sparse compression technique to substantially reduce the computational cost of a dense-weight skinning model, with insignificant loss of its visual quality. It can directly work on dense skinning weights or use example-based skinning decomposition to further improve its accuracy. Experiments and comparisons demonstrate that the introduced sparse compression model can significantly outperform state of the art weight reduction algorithms, as well as skinning decomposition algorithms with a sparseness constraint.

Skip Supplemental Material Section

Supplemental Material

tp111.mp4

References

  1. Aharon, M., Elad, M., and Bruckstein, A. 2006. K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation. IEEE Transactions on Signal Processing 54, 11 (Nov.), 4311--4322. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Baran, I., and Popović, J. 2007. Automatic rigging and animation of 3d characters. ACM Trans. Graph. 26 (July). Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Borosán, P., Jin, M., DeCarlo, D., Gingold, Y., and Nealen, A. 2012. Rigmesh: automatic rigging for part-based shape modeling and deformation. ACM Trans. Graph. 31, 6 (Nov.), 198:1--198:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Hasler, N., Thormählen, T., Rosenhahn, B., and Seidel, H.-P. 2010. Learning skeletons for shape and pose. In I3D'10, 23--30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Jacobson, A., and Sorkine, O. 2011. Stretchable and twistable bones for skeletal shape deformation. ACM Trans. Graph. 30 (Dec.), 165:1--165:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Jacobson, A., Baran, I., Popović, J., and Sorkine, O. 2011. Bounded biharmonic weights for real-time deformation. ACM Trans. Graph. 30, 4 (July), 78:1--78:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Jacobson, A., Baran, I., Kavan, L., Popović, J., and Sorkine, O. 2012. Fast automatic skinning transformations. ACM Trans. Graph. 31, 4 (July), 77:1--77:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Jacobson, A., Weinkauf, T., and Sorkine, O. 2012. Smooth shape-aware functions with controlled extrema. Comp. Graph. Forum 31, 5 (Aug.), 1577--1586. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. James, D. L., and Twigg, C. D. 2005. Skinning mesh animations. ACM Trans. Graph. 24 (July), 399--407. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Joshi, P., Meyer, M., DeRose, T., Green, B., and Sanocki, T. 2007. Harmonic coordinates for character articulation. ACM Trans. Graph. 26, 3 (July). Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Ju, T., Schaefer, S., and Warren, J. 2005. Mean value coordinates for closed triangular meshes. ACM Trans. Graph. 24, 3 (July), 561--566. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Kavan, L., and Sorkine, O. 2012. Elasticity-inspired deformers for character articulation. ACM Trans. Graph. 31, 6 (Nov.), 196:1--196:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Kavan, L., McDonnell, R., Dobbyn, S., Žára, J., and O'Sullivan, C. 2007. Skinning arbitrary deformations. In I3D'07, 53--60. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Kavan, L., Collins, S., Žára, J., and O'Sullivan, C. 2008. Geometric skinning with approximate dual quaternion blending. ACM Trans. Graph. 27 (November), 105:1--105:23. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Kavan, L., Collins, S., and O'Sullivan, C. 2009. Automatic linearization of nonlinear skinning. In I3D'09, 49--56. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Kavan, L., Sloan, P.-P., and O'Sullivan, C. 2010. Fast and efficient skinning of animated meshes. Comput. Graph. Forum 29, 2, 327--336.Google ScholarGoogle ScholarCross RefCross Ref
  17. Kry, P. G., James, D. L., and Pai, D. K. 2002. Eigenskin: real time large deformation character skinning in hardware. In SCA'02, 153--159. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Landreneau, E., and Schaefer, S. 2010. Poisson-based weight reduction of animated meshes. Comput. Graph. Forum 29, 6, 1945--1954.Google ScholarGoogle ScholarCross RefCross Ref
  19. Le, B. H., and Deng, Z. 2012. Smooth skinning decomposition with rigid bones. ACM Trans. Graph. 31, 6 (Nov.), 199:1--199:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Lee, H., Battle, A., Raina, R., and Ng, A. Y. 2007. Efficient sparse coding algorithms. In Advances in Neural Information Processing Systems 19. MIT Press, 801--808.Google ScholarGoogle Scholar
  21. Lewis, J. P., Cordner, M., and Fong, N. 2000. Pose space deformation: a unified approach to shape interpolation and skeleton-driven deformation. In Proc. of ACM SIGGRAPH'00, 165--172. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Mairal, J., Bach, F., Ponce, J., and Sapiro, G. 2010. Online learning for matrix factorization and sparse coding. J. Mach. Learn. Res. 11 (Mar.), 19--60. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Mallat, S., and Zhang, Z. 1993. Matching pursuits with time-frequency dictionaries. Trans. Sig. Proc. 41, 12 (Dec.), 3397--3415. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Marquardt, D. W. 1963. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. SIAM Journal on Applied Mathematics 11, 2, 431--441.Google ScholarGoogle ScholarCross RefCross Ref
  25. Merry, B., Marais, P., and Gain, J. 2006. Animation space: A truly linear framework for character animation. ACM Trans. Graph. 25 (October), 1400--1423. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Mohr, A., and Gleicher, M. 2003. Building efficient, accurate character skins from examples. ACM Trans. Graph. 22 (July), 562--568. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Nguyen, H. 2007. GPU gems 3 (first edition), chapter 4.4. Addison-Wesley Professional. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Nocedal, J., and Wright, S. 2000. Numerical Optimization. Springer.Google ScholarGoogle Scholar
  29. Schaefer, S., and Yuksel, C. 2007. Example-based skeleton extraction. In SGP'07, 153--162. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Sederberg, T. W., and Parry, S. R. 1986. Free-form deformation of solid geometric models. SIGGRAPH Comput. Graph. 20, 4 (Aug.), 151--160. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Sumner, R. W., and Popović, J. 2004. Deformation transfer for triangle meshes. ACM Trans. Graph. 23 (August), 399--405. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Vlasic, D., Baran, I., Matusik, W., and Popović, J. 2008. Articulated mesh animation from multi-view silhouettes. ACM Trans. Graph. 27 (August), 97:1--97:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Wang, X. C., and Phillips, C. 2002. Multi-weight enveloping: least-squares approximation techniques for skin animation. In SCA'02, 129--138. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Warren, J., Schaefer, S., Hirani, A. N., and Desbrun, M. 2004. Barycentric coordinates for convex sets. Tech. rep., Advances in Computational and Applied Mathematics.Google ScholarGoogle Scholar
  35. Zou, H., and Hastie, T. 2005. Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society, Series B 67, 301--320.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Two-layer sparse compression of dense-weight blend skinning

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 32, Issue 4
      July 2013
      1215 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/2461912
      Issue’s Table of Contents

      Copyright © 2013 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 21 July 2013
      Published in tog Volume 32, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader