skip to main content
research-article

Automated video looping with progressive dynamism

Published:21 July 2013Publication History
Skip Abstract Section

Abstract

Given a short video we create a representation that captures a spectrum of looping videos with varying levels of dynamism, ranging from a static image to a highly animated loop. In such a progressively dynamic video, scene liveliness can be adjusted interactively using a slider control. Applications include background images and slideshows, where the desired level of activity may depend on personal taste or mood. The representation also provides a segmentation of the scene into independently looping regions, enabling interactive local adjustment over dynamism. For a landscape scene, this control might correspond to selective animation and deanimation of grass motion, water ripples, and swaying trees. Converting arbitrary video to looping content is a challenging research problem. Unlike prior work, we explore an optimization in which each pixel automatically determines its own looping period. The resulting nested segmentation of static and dynamic scene regions forms an extremely compact representation.

Skip Supplemental Material Section

Supplemental Material

tp177.mp4

References

  1. Agarwala, A., Dontcheva, M., Agrawala, M., Drucker, S., Colburn, A., Curless, B., Salesin, D., and Cohen, M. 2004. Interactive digital photomontage. ACM Trans. Graph., 23 (3):294--302. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Agarwala, A., Zheng, K. C., Pal, C., Agrawala, M., Cohen, M., Curless, B., Salesin, D., and Szeliski, R. 2005. Panoramic video textures. ACM Trans. Graph., 24(3). Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bai, J., Agarwala, A., Agrawala, M., and Ramamoorthi, R. 2012. Selectively de-animating video. ACM Trans. Graph., 31(4). Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Beck, J. and Burg, K. 2012. Cinemagraphs. http://cinemagraphs.com/.Google ScholarGoogle Scholar
  5. Bennett, E. P. and McMillan, L. 2007. Computational time-lapse video. ACM Trans. Graph., 26(3). Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Boykov, Y., Veksler, O., and Zabih, R. 2001. Fast approximate energy minimization via graph cuts. IEEE Trans. on Pattern Anal. Mach. Intell., 23(11). Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Burt, P. J. and Adelson, E. H. 1983. A multiresolution spline with application to image mosaics. ACM Trans. Graph., 2(4). Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Cho, T. S., Joshi, N., Zitnick, C. L., Kang, S. B., Szeliski, R., and Freeman, W. T. 2010. A content-aware image prior. In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).Google ScholarGoogle Scholar
  9. Chuang, Y.-Y., Goldman, D. B., Zheng, K. C., Curless, B., Salesin, D. H., and Szeliski, R. 2005. Animating pictures with stochastic motion textures. ACM Trans. Graph., 24(3). Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Cohen, M. and Szeliski, R. 2006. The moment camera. IEEE Computer, 39(8). Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Couture, V., Langer, M., and Roy, S. 2011. Panoramic stereo video textures. ICCV, pages 1251--1258. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Freeman, W. T., Adelson, E. H., and Heeger, D. J. 1991. Motion without movement. ACM SIGGRAPH Proceedings. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Horn, B. K. P. and Schunk, B. G. 1981. Determining optical flow. Artificial Intelligence, 17:185--203.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Joshi, N., Mehta, S., Drucker, S., Stollnitz, E., Hoppe, H., Uyttendaele, M., and Cohen, M. 2012. Cliplets: Juxtaposing still and dynamic imagery. Proceedings of UIST. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Kolmogorov, V. and Zabih, R. 2004. What energy functions can be minimized via graph cuts? IEEE Trans. on Pattern Anal. Mach. Intell., 26(2). Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Kwatra, V., Schödl, A., Essa, I., Turk, G., and Bobick, A. 2003. Graphcut textures: image and video synthesis using graph cuts. ACM Trans. Graph., 22(3):277--286. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Liu, C., Torralba, A., Freeman, W. T., Durand, F., and Adelson, E. H. 2005. Motion magnification. ACM Trans. Graph., 24(3):519--526. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Mahajan, D., Huang, F.-C., Matusik, W., Ramamoorthi, R., and Belhumeur, P. 2009. Moving gradients: A path-based method for plausible image interpolation. ACM Trans. Graph., 28(3):42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Marks, J., Andalman, B., Beardsley, P. A., Freeman, W., Gibson, S., Hodgins, J., Kang, T., Mirtich, B., Pfister, H., Ruml, W., Ryall, K., Seims, J., and Shieber, S. 1997. Design galleries: A general approach to setting parameters for computer graphics and animation. ACM SIGGRAPH Proceedings. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Pritch, Y., Rav-Acha, A., and Peleg, S. 2008. Nonchronological video synopsis and indexing. IEEE Trans. on Pattern Anal. Mach. Intell., 30(11). Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Rav-Acha, A., Pritch, Y., Lischinski, D., and Peleg, S. 2007. Dynamosaicing: Mosaicing of dynamic scenes. IEEE Trans. on Pattern Anal. Mach. Intell., 29(10). Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Schödl, A., Szeliski, R., Salesin, D. H., and Essa, I. 2000. Video textures. In SIGGRAPH Proceedings, pages 489--498. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Sunkavalli, K., Matusik, W., Pfister, H., and Rusinkiewicz, S. 2007. Factored time-lapse video. ACM Trans. Graph., 26(3). Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Tompkin, J., Pece, F., Subr, K., and Kautz, J. 2011. Towards moment images: Automatic cinemagraphs. In Proc. of the 8th European Conference on Visual Media Production (CVMP 2011). Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Wang, J., Bhat, P., Colburn, R. A., Agrawala, M., and Cohen, M. F. 2005. Interactive video cutout. ACM Trans. Graph., 24(3). Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Wu, H.-Y., Rubinstein, M., Shih, E., Guttag, J., Durand, F., and Freeman, W. 2012. Eulerian video magnification for revealing subtle changes in the world. ACM Trans. Graph., 31(4). Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Automated video looping with progressive dynamism

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 32, Issue 4
      July 2013
      1215 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/2461912
      Issue’s Table of Contents

      Copyright © 2013 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 21 July 2013
      Published in tog Volume 32, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader