skip to main content
research-article

Image-based reconstruction and synthesis of dense foliage

Published:21 July 2013Publication History
Skip Abstract Section

Abstract

Flora is an element in many computer-generated scenes. But trees, bushes and plants have complex geometry and appearance, and are difficult to model manually. One way to address this is to capture models directly from the real world. Existing techniques have focused on extracting macro structure such as the branching structure of trees, or the structure of broad-leaved plants with a relatively small number of surfaces. This paper presents a finer scale technique to demonstrate for the first time the processing of densely leaved foliage - computation of 3D structure, plus extraction of statistics for leaf shape and the configuration of neighboring leaves. Our method starts with a mesh of a single exemplar leaf of the target foliage. Using a small number of images, point cloud data is obtained from multi-view stereo, and the exemplar leaf mesh is fitted non-rigidly to the point cloud over several iterations. In addition, our method learns a statistical model of leaf shape and appearance during the reconstruction phase, and a model of the transformations between neighboring leaves. This information is useful in two ways - to augment and increase leaf density in reconstructions of captured foliage, and to synthesize new foliage that conforms to a user-specified layout and density. The result of our technique is a dense set of captured leaves with realistic appearance, and a method for leaf synthesis. Our approach excels at reconstructing plants and bushes that are primarily defined by dense leaves and is demonstrated with multiple examples.

Skip Supplemental Material Section

Supplemental Material

References

  1. Ahrends, H. E., Etzold, S., Eugster, W., Buchmann, N., Jeanneret, F., and Wanner, H. 2009. Use of digital images to observe forest phenology and drought stress. In EGU General Assembly Conference Abstracts, vol. 11, 10886.Google ScholarGoogle Scholar
  2. Anastacio, F., Sousa, M. C., Samavati, F., and Jorge, J. A. 2006. Modeling plant structures using concept sketches. In Proceedings of NPAR, 105--113. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Baranoski, G. V. G., and Rokne, J. G. 2001. Efficiently simulating scattering of light by leaves. The Visual Computer 17, 8, 491--505.Google ScholarGoogle ScholarCross RefCross Ref
  4. Beeler, T., Bickel, B., Sumner, R., Beardsley, P., and Gross, M. 2010. High-quality single-shot capture of facial geometry. ACM Trans. Graphics (Proc. SIGGRAPH 98). Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Besl, P. J., and McKay, N. D. 1992. A method for registration of 3-d shapes. IEEE Trans. on PAMI 14, 2, 239--256. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Blanz, V., and Vetter, T. 1999. A morphable model for the synthesis of 3d faces. In SIGGRAPH, 187--194. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Blinn, J. F. 1977. Models of light reflection for computer synthesized pictures. SIGGRAPH Comput. Graph. 11, 2 (July), 192--198. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Bradley, D., Boubekeur, T., and Heidrich, W. 2008. Accurate multi-view reconstruction using robust binocular stereo and surface meshing. In Proc. CVPR.Google ScholarGoogle Scholar
  9. Chen, X., Neubert, B., Xu, Y.-Q., Deussen, O., and Kang, S. B. 2008. Sketch-based tree modeling using markov random field. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 27, 109. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. COBWEB. 2013. Citizen Observatory Web,edina.ac.uk.Google ScholarGoogle Scholar
  11. Deussen, O., and Lintermann, B. 2005. Digital Design of Nature: Computer Generated Plants and Organics. Springer-Verlag. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Diener, J., Reveret, L., and Eugene, F. 2006. Hierarchical retargetting of 2d motion fields to the animation of 3d plant models. In Proceedings of the 2006 ACM SIGGRAPH/Eurographics symposium on Computer animation, 187--195. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Fischler, M. A., and Bolles, R. C. 1981. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24, 6, 381--395. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Goesele, M., Curless, B., and Seitz, S. M. 2006. Multi-view stereo revisited. In CVPR. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Greene, N. 1989. Voxel space automata: modeling with stochastic growth processes in voxel space. SIGGRAPH Comput. Graph. 23, 3, 175--184. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Habel, R., Kusternig, A., and Wimmer, M. 2007. Physically based real-time translucency for leaves. In Proc. Eurographics Symposium on Rendering, 253--263. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Jakob, W., 2012. Mitsuba renderer. www.mitsuba-renderer.org.Google ScholarGoogle Scholar
  18. Li, C., Deussen, O., Song, Y.-Z., Willis, P., and Hall, P. 2011. Modeling and generating moving trees from video. ACM Trans. Graphics (Proc. SIGGRAPH Asia) 30, 127. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Lindenmayer, A. 1968. Mathematical models for cellular interactions in development ii. simple and branching filaments with two-sided inputs. Journal of Theoretical Biology 18, 3, 300--315.Google ScholarGoogle ScholarCross RefCross Ref
  20. Lintermann, B., and Deussen, O. 1999. Interactive modeling of plants. IEEE Comput. Graph. Appl. 19, 56--65. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Livny, Y., Yan, F., Olson, M., Chen, B., Zhang, H., and El-Sana, J. 2010. Automatic reconstruction of tree skeletal structures from point clouds. ACM Trans. Graphics (Proc. SIGGRAPH Asia) 29, 151. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Livny, Y., Pirk, S., Cheng, Z., Yan, F., Deussen, O., Cohen-Or, D., and Chen, B. 2011. Texture-lobes for tree modelling. ACM Trans. Graphics (Proc. SIGGRAPH) 30, 53. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Ma, W., Zha, H., Liu, J., Zhang, X., and Xiang, B. 2008. Image-based plant modeling by knowing leaves from their apexes. In Proc. ICPR.Google ScholarGoogle Scholar
  24. Mundermann, L., MacMurchy, P., Pivovarov, J., and Prusinkiewicz, P. 2003. Modeling lobed leaves. In Computer Graphics International.Google ScholarGoogle Scholar
  25. Neubert, B., Franken, T., and Deussen, O. 2007. Approximate image-based tree-modeling using particle flows. ACM Trans. Graphics (Proc. SIGGRAPH) 26, 88. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Okabe, M., Owada, S., and Igarashi, T. 2005. Interactive design of botanical trees using freehand sketches and example-based editing. Computer Graphics Forum 24, 3, 487--496.Google ScholarGoogle ScholarCross RefCross Ref
  27. Palubicki, W., Horel, K., Longay, S., Runions, A., Lane, B., Měch, R., and Prusinkiewicz, P. 2009. Self-organizing tree models for image synthesis. ACM Trans. Graph. (Proc. SIGGRAPH) 28, 58. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Papazov, C., and Burschka, D. 2011. An efficient ransac for 3d object recognition in noisy and occluded scenes. In Proceedings of the 10th Asian conference on Computer vision, 135--148. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Pirk, S., Niese, T., Deussen, O., and Neubert, B. 2012. Capturing and animating the morphogenesis of polygonal tree models. ACM Trans. Graph. 31, 6, 169:1--169:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Pirk, S., Stava, O., Kratt, J., Said, M. A. M., Neubert, B., Měch, R., Benes, B., and Deussen, O. 2012. Plastic trees: interactive self-adapting botanical tree models. ACM Trans. Graph. 31, 4, 50:1--50:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Prusinkiewicz, P., and Lindenmayer, A. 1990. The algorithmic beauty of plants. Springer-Verlag. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Prusinkiewicz, P., James, M., and Měch, R. 1994. Synthetic topiary. In SIGGRAPH '94, 351--358. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Quan, L., Tan, P., Zeng, G., Yuan, L., Wang, J., and Kang, S. B. 2006. Image-based plant modeling. ACM Trans. Graphics (Proc. SIGGRAPH) 25, 599--604. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Reche-Martinez, A., Martin, I., and Drettakis, G. 2004. Volumetric reconstruction and interactive rendering of trees from photographs. ACM Trans. Graphics (Proc. SIGGRAPH) 23, 720--727. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Schnabel, R., Wahl, R., and Klein, R. 2007. Efficient ransac for point-cloud shape detection. Computer Graphics Forum 26, 2, 214--226.Google ScholarGoogle ScholarCross RefCross Ref
  36. Seitz, S. M., Curless, B., Diebel, J., Scharstein, D., and Szeliski, R. 2006. A comparison and evaluation of multi-view stereo reconstruction algorithms. In CVPR. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Snavely, N., Seitz, S. M., and Szeliski, R. 2006. Photo tourism: Exploring image collections in 3d. ACM Transactions on Graphics (Proc. of SIGGRAPH) 25, 3, 835--846. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Sonohat, G., Sinoquet, H., Kulandaivelu, V., Combes, D., and Lescourret, F. 2006. Three-dimensional reconstruction of partially 3d-digitized peach tree canopies. Tree Physiology 26, 3, 337--351.Google ScholarGoogle ScholarCross RefCross Ref
  39. Sorkine, O., Cohen-Or, D., Lipman, Y., Alexa, M., Rössl, C., and Seidel, H.-P. 2004. Laplacian surface editing. In Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry processing, 175--184. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Strecha, C., Fransens, R., and Gool, L. V. 2006. Combined depth and outlier estimation in multi-view stereo. In CVPR. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Szeliski, R. 1999. A multi-view approach to motion and stereo. In CVPR.Google ScholarGoogle Scholar
  42. Talton, J. O., Lou, Y., Lesser, S., Duke, J., Měch, R., and Koltun, V. 2011. Metropolis procedural modeling. ACM Trans. Graph. 30, 11:1--11:14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Tan, P., Zeng, G., Wang, J., Kang, S. B., and Quan, L. 2007. Image-based tree modeling. ACM Trans. Graphics (Proc. SIGGRAPH) 26, 87. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Tan, P., Fang, T., Xiao, J., Zhao, P., and Quan, L. 2008. Single image tree modeling. ACM Trans. Graphics (Proc. SIGGRAPH Asia) 27, 108. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Wilson, E. 2009. Ant Lovers Unite,www.npr.org.Google ScholarGoogle Scholar
  46. Wither, J., Boudon, F., Cani, M.-P., and Godin, C. 2009. Structure from silhouettes: a new paradigm for fast sketch-based design of trees. Computer Graphics Forum 28, 2, 541--550.Google ScholarGoogle ScholarCross RefCross Ref
  47. Xu, H., Gossett, N., and Chen, B. 2007. Knowledge and heuristic-based modeling of laser-scanned trees. ACM Trans. Graphics 26, 19--31. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Image-based reconstruction and synthesis of dense foliage

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 32, Issue 4
          July 2013
          1215 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/2461912
          Issue’s Table of Contents

          Copyright © 2013 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 21 July 2013
          Published in tog Volume 32, Issue 4

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader