skip to main content
research-article
Open Access
Seminal Paper

Computational design of mechanical characters

Published:21 July 2013Publication History
Skip Abstract Section

Abstract

We present an interactive design system that allows non-expert users to create animated mechanical characters. Given an articulated character as input, the user iteratively creates an animation by sketching motion curves indicating how different parts of the character should move. For each motion curve, our framework creates an optimized mechanism that reproduces it as closely as possible. The resulting mechanisms are attached to the character and then connected to each other using gear trains, which are created in a semi-automated fashion. The mechanical assemblies generated with our system can be driven with a single input driver, such as a hand-operated crank or an electric motor, and they can be fabricated using rapid prototyping devices. We demonstrate the versatility of our approach by designing a wide range of mechanical characters, several of which we manufactured using 3D printing. While our pipeline is designed for characters driven by planar mechanisms, significant parts of it extend directly to non-planar mechanisms, allowing us to create characters with compelling 3D motions.

Skip Supplemental Material Section

Supplemental Material

tp151.mp4

References

  1. Alt, H., and Godau, M. 1995. Computing the fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications 5, 01 & 02, 75--91.Google ScholarGoogle ScholarCross RefCross Ref
  2. Bächer, M., Bickel, B., James, D. L., and Pfister, H. 2012. Fabricating articulated characters from skinned meshes. In Proc. of ACM SIGGRAPH '12.Google ScholarGoogle Scholar
  3. Bergou, M., Audoly, B., Vouga, E., Wardetzky, M., and Grinspun, E. 2010. Discrete viscous threads. In Proc. of ACM SIGGRAPH '10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Bickel, B., Bächer, M., Otaduy, M. A., Lee, H. R., Pfister, H., Gross, M., and Matusik, W. 2010. Design and fabrication of materials with desired deformation behavior. In Proc. of ACM SIGGRAPH '10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bridson, R. 2007. Fast poisson disk sampling in arbitrary dimensions. In Proc. of ACM SIGGRAPH '07. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Cabrera, J., Simon, A., and Prado, M. 2002. Optimal synthesis of mechanisms with genetic algorithms. Mechanism and machine theory 37, 10, 1165--1177.Google ScholarGoogle Scholar
  7. Calì, J., Calian, D., Amati, C., Kleinberger, R., Steed, A., Kautz, J., and Weyrich, T. 2012. 3D-printing of non-assembly, articulated models. In Proc. of ACM SIGGRAPH Asia '12.Google ScholarGoogle Scholar
  8. Chiou, S., and Sridhar, K. 1999. Automated conceptual design of mechanisms. Mechanism and Machine Theory 34, 3, 467--495.Google ScholarGoogle ScholarCross RefCross Ref
  9. Demarsin, K., Vanderstraeten, D., Volodine, T., and Roose, D. 2007. Detection of closed sharp edges in point clouds using normal estimation and graph theory. Computer-Aided Design 39, 4, 276--283. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Dong, Y., Wang, J., Pellacini, F., Tong, X., and Guo, B. 2010. Fabricating spatially-varying subsurface scattering. In Proc. of ACM SIGGRAPH '10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Eiter, T., and Mannila, H. 1994. Computing discrete fréchet distance. Tech. Rep. CD-TR 94/64, Christian Doppler Labor für Expertensyteme, TU Wien.Google ScholarGoogle Scholar
  12. Eitz, M., Richter, R., Boubekeur, T., Hildebrand, K., and Alexa, M. 2012. Sketch-based shape retrieval. In Proc. of ACM SIGGRAPH '12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Freudenstein, F. 1954. Design of Four-link Mechanisms. Ph. D. Thesis, Columbia University, USA.Google ScholarGoogle Scholar
  14. Gui, J., and Mäntylä, M. 1994. Functional understanding of assembly modelling. Computer-Aided Design 26, 6, 435--451.Google ScholarGoogle ScholarCross RefCross Ref
  15. Hasan, M., Fuchs, M., Matusik, W., Pfister, H., and Rusinkiewicz, S. 2010. Physical reproduction of materials with specified subsurface scattering. In Proc. of ACM SIGGRAPH '10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Johnson, D., 2010. Sisyphus testing shoes. http://www.youtube.com/watch?v=Rh-4zSbmhFU (Accessed on April 8, 2013).Google ScholarGoogle Scholar
  17. Lau, M., Ohgawara, A., Mitani, J., and Igarashi, T. 2011. Converting 3D furniture models to fabricatable parts and connectors. In Proc. of ACM SIGGRAPH '11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Malzbender, T., Samadani, R., Scher, S., Crume, A., Dunn, D., and Davis, J. 2012. Printing reflectance functions. ACM Trans. Graph. 31, 3 (June), 20:1--20:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Marks, J., Andalman, B., Beardsley, P. A., Freeman, W., Gibson, S., Hodgins, J. K., Kang, T., Mirtich, B., Pfister, H., Ruml, W., Ryall, K., Seims, J., and Shieber, S. 1997. Design galleries: A general approach to setting parameters for computer graphics and animation. In Proc. of ACM SIGGRAPH '97, 389--400. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Mitra, N. J., Yang, Y.-L., Yan, D.-M., Li, W., and Agrawala, M. 2010. Illustrating how mechanical assemblies work. In Proc. of ACM SIGGRAPH '10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Mori, Y., and Igarashi, T. 2007. Plushie: An interactive design system for plush toys. In Proc. of ACM SIGGRAPH '07. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Nocedal, J., and Wright, S. J. 2006. Numerical Optimization. Springer.Google ScholarGoogle Scholar
  23. Peppe, R. 2002. Automata and Mechanical Toys. Crowood Press.Google ScholarGoogle Scholar
  24. Sclater, N., and Chironis, N. 2001. Mechanisms and mechanical devices sourcebook. McGraw-Hill.Google ScholarGoogle Scholar
  25. Selman, B., Kautz, H., Cohen, B., et al. 1993. Local search strategies for satisfiability testing. Cliques, coloring, and satisfiability: Second DIMACS implementation challenge 26, 521--532.Google ScholarGoogle Scholar
  26. Stava, O., Vanek, J., Benes, B., Carr, N., and Měch, R. 2012. Stress relief: improving structural strength of 3d printable objects. In Proc. of ACM SIGGRAPH '12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Subramanian, D., and Wang, C. 1995. Kinematic synthesis with configuration spaces. Research in Engineering Design 7, 3, 193--213.Google ScholarGoogle ScholarCross RefCross Ref
  28. Umetani, N., Igarashi, T., and Mitra, N. J. 2012. Guided exploration of physically valid shapes for furniture design. In Proc. of ACM SIGGRAPH '12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Wesley, M., Lozano-Perez, T., Lieberman, L., Lavin, M., and Grossman, D. 1980. A geometric modeling system for automated mechanical assembly. IBM Journal of Research and Development 24, 1, 64--74. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Weyrich, T., Peers, P., Matusik, W., and Rusinkiewicz, S. 2009. Fabricating microgeometry for custom surface reflectance. In Proc. of ACM SIGGRAPH '09. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Xing, E., Ng, A., Jordan, M., and Russell, S. 2002. Distance metric learning, with application to clustering with side-information. Advances in neural information processing systems 15, 505--512.Google ScholarGoogle Scholar
  32. Yao, Y., and Yan, H. 2003. A new method for torque balancing of planar linkages using non-circular gears. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 217, 5, 495--503.Google ScholarGoogle ScholarCross RefCross Ref
  33. Zhu, L., Xu, W., Snyder, J., Liu, Y., Wang, G., and Guo, B. 2012. Motion-guided mechanical toy modeling. In Proc. of ACM SIGGRAPH Asia '12. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Computational design of mechanical characters

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in

            Full Access

            • Published in

              cover image ACM Transactions on Graphics
              ACM Transactions on Graphics  Volume 32, Issue 4
              July 2013
              1215 pages
              ISSN:0730-0301
              EISSN:1557-7368
              DOI:10.1145/2461912
              Issue’s Table of Contents
              • cover image ACM Overlay Books
                Seminal Graphics Papers: Pushing the Boundaries, Volume 2
                August 2023
                893 pages
                ISBN:9798400708978
                DOI:10.1145/3596711
                • Editor:
                • Mary C. Whitton

              Copyright © 2013 ACM

              Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

              Publisher

              Association for Computing Machinery

              New York, NY, United States

              Publication History

              • Published: 21 July 2013
              Published in tog Volume 32, Issue 4

              Permissions

              Request permissions about this article.

              Request Permissions

              Check for updates

              Qualifiers

              • research-article

            PDF Format

            View or Download as a PDF file.

            PDF

            eReader

            View online with eReader.

            eReader