skip to main content
research-article

Qualitative organization of collections of shapes via quartet analysis

Published:21 July 2013Publication History
Skip Abstract Section

Abstract

We present a method for organizing a heterogeneous collection of 3D shapes for overview and exploration. Instead of relying on quantitative distances, which may become unreliable between dissimilar shapes, we introduce a qualitative analysis which utilizes multiple distance measures but only in cases where the measures can be reliably compared. Our analysis is based on the notion of quartets, each defined by two pairs of shapes, where the shapes in each pair are close to each other, but far apart from the shapes in the other pair. Combining the information from many quartets computed across a shape collection using several distance measures, we create a hierarchical structure we call categorization tree of the shape collection. This tree satisfies the topological (qualitative) constraints imposed by the quartets creating an effective organization of the shapes. We present categorization trees computed on various collections of shapes and compare them to ground truth data from human categorization. We further introduce the concept of degree of separation chart for every shape in the collection and show the effectiveness of using it for interactive shapes exploration.

Skip Supplemental Material Section

Supplemental Material

tp042.mp4

References

  1. Bronstein, A. M., Bronstein, M. M., Kimmel, R., Mahmoudi, M., and Sapiro, G. 2010. A gromov-hausdorff framework with diffusion geometry for topologically-robust non-rigid shape matching. Int. J. Comput. Vision 89, 2-3, 266--286. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Bronstein, A. M., Bronstein, M. M., Guibas, L. J., and Ovsjanikov, M. 2011. Shape google: Geometric words and expressions for invariant shape retrieval. ACM Trans. Graph. 30, 1, 1:1--1:20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Chen, D.-Y., Tian, X.-P., Shen, Y.-T., and Ouhyoung, M. 2003. On visual similarity based 3D model retrieval. Comput. Graph. Forum 22, 3, 223--232.Google ScholarGoogle ScholarCross RefCross Ref
  4. Dueck, D., and Frey, B. J. 2007. Non-metric affinity propagation for unsupervised image categorization. In IEEE 11th International Conference on Computer Vision, IEEE, 1--8.Google ScholarGoogle Scholar
  5. Dumais, S., and Chen, H. 2000. Hierarchical classification of web content. In Proc. of ACM SIGIR conference on Research and development in information retrieval, 256--263. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Erdos, P. L., Steel, M. A., Szekely, L. A., and Warnow, T. J. 1997. A few logs suffice to build (almost) all trees (ii). Tech. rep. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Everitt, B. S., Landau, S., Leese, M., and Stahl, D. 2011. Cluster analysis, 5th edition. Wiley Series in Probability and Statistics.Google ScholarGoogle Scholar
  8. Frey, B. J., and Dueck, D. 2007. Clustering by passing messages between data points. Science 315, 972--976.Google ScholarGoogle ScholarCross RefCross Ref
  9. Gal, R., Shamir, A., and Cohen-Or, D. 2007. Pose-oblivious shape signature. IEEE Transactions on Visualization and Computer Graphics 13, 2, 261--271. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Golovinskiy, A., and Funkhouser, T. 2009. Consistent segmentation of 3D models. Comput. Graph. 33, 3, 262--269. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Kazhdan, M., Funkhouser, T., and Rusinkiewicz, S. 2003. Rotation invariant spherical harmonic representation of 3d shape descriptors. In SGP'03, 156--164. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Kazhdan, M., Funkhouser, T., and Rusinkiewicz, S. 2003. Rotation invariant spherical harmonic representation of 3d shape descriptors. In Proceedings of the 2003 Eurographics/ACM SIGGRAPH symposium on Geometry processing, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, SGP '03, 156--164. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Kim, V. G., Li, W., Mitra, N. J., DiVerdi, S., and Funkhouser, T. 2012. Exploring collections of 3D models using fuzzy correspondences. ACM Trans. Graph. 31, 4, 54:1--54:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Kohonen, T. 1982. Self-organized formation of topologically correct feature maps. Biological Cybernetics 43, 59--69.Google ScholarGoogle ScholarCross RefCross Ref
  15. Ling, H., and Jacobs, D. W. 2007. Shape classification using the inner-distance. IEEE Trans. Pattern Anal. Mach. Intell. 29, 2, 286--299. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Mardia, K. V., Kent, J. T., and Bibby, J. M. 1980. Multivariate Analysis (Probability And Mathematical Statistics) Author:, Publisher. Academic Press.Google ScholarGoogle Scholar
  17. Osada, R., Funkhouser, T., Chazelle, B., and Dobkin, D. 2002. Shape distributions. ACM Trans. Graph. 21, 4, 807--832. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Ovsjanikov, M., Li, W., Guibas, L., and Mitra, N. J. 2011. Exploration of continuous variability in collections of 3D shapes. ACM Trans. Graph. 30, 4, 33:1--33:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Ranwez, V., and Gascuel, O. 2001. Quartet-based phylogenetic inference: Improvements and limits. Molecular Biology and Evolution 18, 6, 1103--1116.Google ScholarGoogle ScholarCross RefCross Ref
  20. Semple, C., and Steel, M. 2003. Phylogenetics. Oxford Univerity Press.Google ScholarGoogle Scholar
  21. Shapira, L., Shamir, A., and Cohen-Or, D. 2008. Consistent mesh partitioning and skeletonisation using the shape diameter function. Vis. Comput. 24, 4, 249--259. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Shilane, P., Min, P., Kazhdan, M., and Funkhouser, T. 2004. The princeton shape benchmark. In SMI'04, 167--178. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Sidi, O., van Kaick, O., Kleiman, Y., Zhang, H., and Cohen-Or, D. 2011. Unsupervised co-segmentation of a set of shapes via descriptor-space spectral clustering. ACM Trans. Graph. 30, 6, 126:1--126:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Snir, S., and Rao, S. 2010. Quartets maxcut: A divide and conquer quartets algorithm. IEEE/ACM Trans. Comput. Biol. Bioinformatics 7, 4, 704--718. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Strimmer, K., Goldman, N., and von Haeseler, A. 1997. Bayesian probabilites and quartet puzzling. Molecular Biology and Evolution. 14, 2, 210--211.Google ScholarGoogle ScholarCross RefCross Ref
  26. Tangelder, J. W., and Veltkamp, R. C. 2008. A survey of content based 3D shape retrieval methods. Multimedia Tools Appl. 39, 3, 441--471. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Wang, Y., Asafi, S., van Kaick, O., Zhang, H., Cohen-Or, D., and Chen, B. 2012. Active co-analysis of a set of shapes. ACM Trans. Graph. 31, 6 (Nov.), 165:1--165:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Weigend, A. S., Wiener, E. D., and Pedersen, J. O. 1999. Exploiting hierarchy in text categorization. Information Retrieval 1, 3 (Oct.), 193--216. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Willson, S. J. 1998. Building phylogenetic trees from quartets by using local inconsistency measures. Molecular Biology and Evolution 16, 5, 685--693.Google ScholarGoogle ScholarCross RefCross Ref
  30. Xu, K., Li, H., Zhang, H., Cohen-Or, D., Xiong, Y., and Cheng, Z.-Q. 2010. Style-content separation by anisotropic part scales. ACM Trans. Graph. 29, 6 (Dec.), 184:1--184:10. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Qualitative organization of collections of shapes via quartet analysis

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 32, Issue 4
        July 2013
        1215 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2461912
        Issue’s Table of Contents

        Copyright © 2013 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 21 July 2013
        Published in tog Volume 32, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader