skip to main content
research-article

Sketch-based generation and editing of quad meshes

Published:21 July 2013Publication History
Skip Abstract Section

Abstract

Coarse quad meshes are the preferred representation for animating characters in movies and video games. In these scenarios, artists want explicit control over the edge flows and the singularities of the quad mesh. Despite the significant advances in recent years, existing automatic quad remeshing algorithms are not yet able to achieve the quality of manually created remeshings. We present an interactive system for manual quad remeshing that provides the user with a high degree of control while avoiding the tediousness involved in existing manual tools. With our sketch-based interface the user constructs a quad mesh by defining patches consisting of individual quads. The desired edge flow is intuitively specified by the sketched patch boundaries, and the mesh topology can be adjusted by varying the number of edge subdivisions at patch boundaries. Our system automatically inserts singularities inside patches if necessary, while providing the user with direct control of their topological and geometrical locations. We developed a set of novel user interfaces that assist the user in constructing a curve network representing such patch boundaries. The effectiveness of our system is demonstrated through a user evaluation with professional artists. Our system is also useful for editing automatically generated quad meshes.

Skip Supplemental Material Section

Supplemental Material

tp056.mp4

References

  1. 3D-Coat, 2013. Pilgway. Version V3, http://3d-coat.com/.Google ScholarGoogle Scholar
  2. Bae, S.-H., Balakrishnan, R., and Singh, K. 2009. Every-bodyLovesSketch: 3D sketching for a broader audience. In Proc. UIST, 59--68. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bessmeltsev, M., Wang, C., Sheffer, A., and Singh, K. 2012. Design-driven quadrangulation of closed 3D curves. ACM Trans. Graph. 31, 6, 178. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Bommes, D., Zimmer, H., and Kobbelt, L. 2009. Mixed-integer quadrangulation. ACM Trans. Graph. 28, 3, 77. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bommes, D., Lempfer, T., and Kobbelt, L. 2011. Global structure optimization of quadrilateral meshes. Comput. Graph. Forum 30, 2, 375--384.Google ScholarGoogle ScholarCross RefCross Ref
  6. Bommes, D., Lévy, B., Pietroni, N., Puppo, E., Silva, C., Tarini, M., and Zorin, D. 2012. Quad meshing. In Eurographics 2012 State of the Art Reports, 159--182.Google ScholarGoogle Scholar
  7. Campen, M., Bommes, D., and Kobbelt, L. 2012. Dual loops meshing: quality quad layouts on manifolds. ACM Trans. Graph. 31, 4, 110:1--110:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Chaudhuri, S., and Koltun, V. 2010. Data-driven suggestions for creativity support in 3D modeling. ACM Trans. Graph. 29, 6, 183. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Chaudhuri, S., Kalogerakis, E., Guibas, L. J., and Koltun, V. 2011. Probabilistic reasoning for assembly-based 3D modeling. ACM Trans. Graph. 30, 4, 35. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Chen, X., Golovinskiy, A., and Funkhouser, T. A. 2009. A benchmark for 3D mesh segmentation. ACM Trans. Graph. 28, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Crane, K., Desbrun, M., and Schröder, P. 2010. Trivial connections on discrete surfaces. Comput. Graph. Forum 29, 5, 1525--1533.Google ScholarGoogle ScholarCross RefCross Ref
  12. Daniels II, J., Lizier, M. A. S., Siqueira, M. F., Silva, C. T., and Nonato, L. G. 2011. Template-based quadrilateral meshing. Computers & Graphics 35, 3, 471--482. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Fan, L., Meng, M., and Liu, L. 2012. Sketch-based mesh cutting: A comparative study. Graphical Models 74, 6, 292--301. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Hildebrandt, K., Polthier, K., and Wardetzky, M. 2005. Smooth feature lines on surface meshes. In Proc. SGP. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Huang, J., Zhang, M., Ma, J., Liu, X., Kobbelt, L., and Bao, H. 2008. Spectral quadrangulation with orientation and alignment control. ACM Trans. Graph. 27, 5, 147. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Igarashi, T., and Hughes, J. F. 2001. A suggestive interface for 3D drawing. In Proc. UIST, 173--181. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Kälberer, F., Nieser, M., and Polthier, K. 2007. Quad-Cover: Surface parameterization using branched coverings. Comput. Graph. Forum 26, 3, 375--384.Google ScholarGoogle ScholarCross RefCross Ref
  18. Lai, Y., Jin, M., Xie, X., He, Y., Palacios, J., Zhang, E., Hu, S., and Gu, X. 2010. Metric-driven RoSy field design and remeshing. IEEE TVCG 16, 1, 95--108. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Lee, Y., and Lee, S. 2002. Geometric snakes for triangular meshes. Comput. Graph. Forum 21, 3, 229--238.Google ScholarGoogle ScholarCross RefCross Ref
  20. Li, W.-C., Levy, B., and Paul, J.-C. 2005. Mesh editing with an embedded network of curves. In Proc. SMI, 62--71. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Nasri, A., Sabin, M., and Yasseen, Z. 2009. Filling N-sided regions by quad meshes for subdivision surfaces. Comput. Graph. Forum 28, 6, 1644--1658.Google ScholarGoogle ScholarCross RefCross Ref
  22. Palacios, J., and Zhang, E. 2007. Rotational symmetry field design on surfaces. ACM Trans. Graph. 26, 3, 55. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Peng, C.-H., Zhang, E., Kobayashi, Y., and Wonka, P. 2011. Connectivity editing for quadrilateral meshes. ACM Trans. Graph. 30, 141:1--141:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Ray, N., Vallet, B., Li, W., and Lévy, B. 2008. N-symmetry direction field design. ACM Trans. Graph. 27, 2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Schaefer, S., Warren, J., and Zorin, D. 2004. Lofting curve networks using subdivision surfaces. In Proc. SGP, 103--114. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Schmidt, R., Khan, A., Singh, K., and Kurtenbach, G. 2009. Analytic drawing of 3D scaffolds. ACM Trans. Graph. 28, 5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Schmidt, R. 2013. Stroke parameterization. Comput. Graph. Forum 32, 2, (to appear).Google ScholarGoogle Scholar
  28. Takayama, K., Panozzo, D., Sorkine-Hornung, A., and Sorkine-Hornung, O. 2013. Robust and controllable quadrangulation of triangular and rectangular regions. Tech. rep., ETH Zurich.Google ScholarGoogle Scholar
  29. Tarini, M., Puppo, E., Panozzo, D., Pietroni, N., and Cignoni, P. 2011. Simple quad domains for field aligned mesh parametrization. ACM Trans. Graph. 30, 142:1--142:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Tierny, J., Daniels, II, J., Nonato, L. G., Pascucci, V., and Silva, C. T. 2011. Inspired quadrangulation. Computer Aided Design 43, 11, 1516--1526. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Tierny, J., Daniels II, J., Nonato, L. G., Pascucci, V., and Silva, C. T. 2012. Interactive quadrangulation with Reeb atlases and connectivity textures. IEEE TVCG 18, 10, 1650--1663. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Tong, Y., Alliez, P., Cohen-Steiner, D., and Desbrun, M. 2006. Designing quadrangulations with discrete harmonic forms. In Proc. SGP, 201--210. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Umetani, N., Igarashi, T., and Mitra, N. J. 2012. Guided exploration of physically valid shapes for furniture design. ACM Trans. Graph. 31, 4, 86. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. ZBrush, 2013. Pixologic, Inc. Version 4.4, http://www.pixologic.com/zbrush/.Google ScholarGoogle Scholar
  35. Zhang, M., Huang, J., Liu, X., and Bao, H. 2010. A wave-based anisotropic quadrangulation method. ACM Trans. Graph. 29, 118:1--118:8. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Sketch-based generation and editing of quad meshes

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 32, Issue 4
        July 2013
        1215 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2461912
        Issue’s Table of Contents

        Copyright © 2013 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 21 July 2013
        Published in tog Volume 32, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader