skip to main content
research-article

Interactive authoring of simulation-ready plants

Published:21 July 2013Publication History
Skip Abstract Section

Abstract

Physically based simulation can produce quality motion of plants, but requires an authoring stage to convert plant "polygon soup" triangle meshes to a format suitable for physically based simulation. We give a system that can author complex simulation-ready plants in a manner of minutes. Our system decomposes the plant geometry, establishes a hierarchy, builds and connects simulation meshes, and detects instances. It scales to anatomically realistic geometry of adult plants, is robust to non-manifold input geometry, gaps between branches or leaves, free-flying leaves not connected to any branch, spurious geometry, and plant self-collisions in the input configuration. We demonstrate the results using a FEM model reduction simulator that can compute large-deformation dynamics of complex plants at interactive rates, subject to user forces, gravity or randomized wind. We also provide plant fracture (with pre-specified patterns), inverse kinematics to easily pose plants, as well as interactive design of plant material properties. We authored and simulated over 100 plants from diverse climates and geographic regions, including broadleaf (deciduous) trees and conifers, bushes and flowers. Our largest simulations involve anatomically realistic adult trees with hundreds of branches and over 100,000 leaves.

Skip Supplemental Material Section

Supplemental Material

tp089.mp4

References

  1. Akagi, Y., and Kitajima, K. 2006. Computer animation of swaying trees based on physical simulation. Computers & Graphics 30, 4, 529--539.Google ScholarGoogle ScholarCross RefCross Ref
  2. Barbič, J., and James, D. L. 2005. Real-time subspace integration for St. Venant-Kirchhoff deformable models. ACM Trans. on Graphics 24, 3, 982--990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Barbič, J., and Zhao, Y. 2011. Real-time large-deformation substructuring. ACM Trans. on Graphics 30, 4, 91:1--91:7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Barbič, J., da Silva, M., and Popović, J. 2009. Deformable object animation using reduced optimal control. ACM Trans. on Graphics 28, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Beaudoin, J., and Keyser, J. 2004. Simulation levels of detail for plant motion. In Symp. on Computer Animation (SCA), 297--304. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Bergou, M., Wardetzky, M., Robinson, S., Audoly, B., and Grinspun, E. 2008. Discrete elastic rods. ACM Trans. on Graphics 27, 3, 63:1--63:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Bertails, F. 2009. Linear time super-helices. Comput. Graphics Forum 28, 2, 417--426.Google ScholarGoogle ScholarCross RefCross Ref
  8. Bickel, B., Baecher, M., Otaduy, M., Matusik, W., Pfister, H., and Gross, M. 2009. Capture and modeling of non-linear heterogeneous soft tissue. ACM Trans. on Graphics 28, 3, 89:1--89:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Capell, S., Green, S., Curless, B., Duchamp, T., and Popović, Z. 2002. A Multiresolution Framework for Dynamic Deformations. In Symp. on Comp. Animation 2002, 41--48. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Cormen, T. H., Leiserson, C. E., and Rivest, R. L. 1990. Introduction to Algorithms. MIT Press/McGraw-Hill. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Derouet-Jourdan, A., Bertails-Descoubes, F., and Thollot, J. 2010. Stable inverse dynamic curves. ACM Trans. on Graphics 29, 6, 137:1--137:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Deussen, O., and Lintermann, B. 2005. Digital Design of Nature: Computer Generated Plants and Organics. Springer-Verlag, New York. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Diener, J., Rodriguez, M., Baboud, L., and Reveret, L. 2009. Wind projection basis for real-time animation of trees. Computer Graphics Forum 28, 2, 533--540.Google ScholarGoogle ScholarCross RefCross Ref
  14. Gilles, B., Bousquet, G., Faure, F., and Pai, D. K. 2011. Frame-based elastic models. ACM Trans. on Graphics 30, 2, 15:1--15:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Habel, R., Kusternig, A., and Wimmer, M. 2009. Physically Guided Animation of Trees. Computer Graphics Forum 28, 2, 523--532.Google ScholarGoogle ScholarCross RefCross Ref
  16. Hadap, S. 2006. Oriented strands: dynamics of stiff multi-body system. In Symp. on Computer Animation (SCA), 91--100. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Hu, S., Chiba, N., and He, D. 2012. Realistic animation of interactive trees. The Visual Computer 28, 859--868. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Interactive Data Visualization, 1999. Speedtree. www.speedtree.com.Google ScholarGoogle Scholar
  19. James, D. L., and Pai, D. K. 2002. DyRT: Dynamic Response Textures for Real Time Deformation Simulation With Graphics Hardware. ACM Trans. on Graphics 21, 3, 582--585. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. James, D. L., Barbič, J., and Twigg, C. D. 2004. Squashing Cubes: Automating Deformable Model Construction for Graphics. In Proc. of ACM SIGGRAPH Sketches and Applications. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. James, K. R., Haritos, N., and Ades, P. K. 2006. Mechanical stability of trees under dynamic loads. American J. of Botany 93, 10, 1522--1530.Google ScholarGoogle ScholarCross RefCross Ref
  22. James, D. L., Twigg, C. D., Cove, A., and Wang, R. Y. 2007. Mesh Ensemble Motion Graphs: Data-driven Mesh Animation with Constraints. ACM Trans. on Graphics 26, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Kim, T., and James, D. 2011. Physics-based character skinning using multi-domain subspace deformations. In Symp. on Computer Animation (SCA), 63--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Labelle, F., and Shewchuk, J. R. 2007. Isosurface Stuffing: Fast Tetrahedral Meshes with Good Dihedral Angles. ACM Trans. on Graphics 26, 3, 57:1--57:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Lehoucq, R., Sorensen, D., and Yang, C. 1997. ARPACK Users' Guide: Solution of large scale eigenvalue problems with implicitly restarted Arnoldi methods. Tech. rep., Comp. and Applied Mathematics, Rice Univ.Google ScholarGoogle Scholar
  26. Lin, M. C., and Gottschalk, S. 1998. Collision Detection Between Geometric Models: A Survey. In Proc. of IMA Conference on Mathematics of Surfaces, 37--56.Google ScholarGoogle Scholar
  27. Lintermann, B., and Deussen, O. 1999. Interactive modeling of plants. IEEE Comp. Graphics and Applications 19, 1, 56--65. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Longay, S., Runions, A., Boudon, F., and Prusinkiewicz, P. 2012. Interactive procedural modeling of trees on a tablet. In Proc. of Eurographics Symp. on Sketch-Based Interfaces and Modeling, 107--120. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Lu, H., Guo, X., Zhao, C., and Li, C. 2011. Physical model for interactive deformation of 3d plant. International Journal of Virtual Reality 10, 2, 33.Google ScholarGoogle ScholarCross RefCross Ref
  30. Martin, S., Kaufmann, P., Botsch, M., Grinspun, E., and Gross, M. 2010. Unified simulation of elastic rods, shells, and solids. ACM Trans. on Graphics 29, 4, 39:1--39:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Mezger, J., Thomaszewski, B., Pabst, S., and Strasser, W. 2008. Interactive physically-based shape editing. In Proc. of the ACM Symp. on Solid and physical modeling, 79--89. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Müller, M., and Chentanez, N. 2011. Solid simulation with oriented particles. ACM Trans. on Graphics 30, 4, 92:1--92:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Müller, M., Heidelberger, B., Teschner, M., and Gross, M. 2005. Meshless Deformations Based on Shape Matching. ACM Trans. on Graphics 24, 3, 471--478. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Ota, S., Tamura, M., Fujimoto, T., Muraoka, K., and Chiba, N. 2004. A hybrid method for real-time animation of trees swaying in wind fields. The Visual Computer 20, 613--623.Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Parker, E. G., and O'Brien, J. F. 2009. Real-time deformation and fracture in a game environment. In Symp. on Computer Animation (SCA), 156--166. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Pentland, A., and Williams, J. 1989. Good vibrations: Modal dynamics for graphics and animation. Computer Graphics (Proc. of ACM SIGGRAPH 89) 23, 3, 215--222. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Perlin, K. 2002. Improving Noise. ACM Trans. on Graphics 21, 3, 681--682. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Pirk, S., Stava, O., Kratt, J., Said, M. A. M., Neubert, B., Měch, R., Benes, B., and Deussen, O. 2012. Plastic trees: interactive self-adapting botanical tree models. ACM Trans. on Graphics 31, 4, 50:1--50:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Prusinkiewicz, P. 1986. Graphical applications of l-systems. In Graphics Interface/Vision Interface, 247--253. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Sakaguchi, T., and Ohya, J. 1999. Modeling and animation of botanical trees for interactive virtual environments. In Proc. of the Symp. on Virtual reality software and technology, 139--146. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Selino, A., and Jones, M. D. 2012. Large and Small Eddies Matter: Animating Trees in Wind Using Coarse Fluid Simulation and Synthetic Turbulence. Comp. Graphics Forum 32, 1, 75--84.Google ScholarGoogle ScholarCross RefCross Ref
  42. Sifakis, E., and Barbič, J. 2012. FEM Simulation of 3D Deformable Solids: A practitioner's guide to theory, discretization and model reduction, Part 2: Model reduction. In SIGGRAPH Course Notes. www.femdefo.org. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Sousa, T., and Crytek. 2007. GPU Gems 3, Chapter 16. Vegetation Procedural Animation and Shading in Crysis. Addison-Wesley Professional, Boston.Google ScholarGoogle Scholar
  44. Stam, J. 1997. Stochastic Dynamics: Simulating the Effects of Turbulence on Flexible Structures. Comp. Graphics Forum 16, 3, 159--164.Google ScholarGoogle ScholarCross RefCross Ref
  45. Turbosquid, 2000. www.turbosquid.com.Google ScholarGoogle Scholar
  46. Twigg, C., and Kačić-Alesić, Z. 2010. Point cloud glue: constraining simulations using the procrustes transform. In Symp. on Computer Animation (SCA), 45--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Twigg, C., and Kačić-Alesić, Z. 2011. Optimization for sag-free simulations. In Symp. on Computer Animation (SCA), 225--236. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Weber, J. P. 2008. Fast simulation of realistic trees. IEEE Computer Graphics and Applications 28, 3, 67--75. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Wong, J. C., and Datta, A. 2004. Animating real-time realistic movements in small plants. In Proc. of GRAPHITE 2004, 182--189. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Xfrog, 2009. www.xfrog.com.Google ScholarGoogle Scholar
  51. Yang, Y., Xu, W., Guo, X., Zhou, K., and Guo, B. 2013. Boundary-aware multi-domain subspace deformation. IEEE Trans. on Visualization and Computer Graphics, to appear.Google ScholarGoogle ScholarCross RefCross Ref
  52. Zhang, L., Song, C., Tan, Q., Chen, W., and Peng, Q. 2006. Quasi-physical Simulation of Large-Scale Dynamic Forest Scenes. In Advances in Computer Graphics, Springer, vol. 4035 of Lecture Notes in Computer Science, 735--742. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Zhang, L., Zhang, Y., Jiang, Z., Li, L., Chen, W., and Peng, Q. 2007. Precomputing data-driven tree animation. Computer Animation and Virtual Worlds 18, 4-5, 371--382. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Zhang, L., Zhang, Y., Chen, W., and Peng, Q. 2008. Real-time simulation of large-scale dynamic forest with gpu. In IEEE Conf. on Circuits and Systems, 614--617.Google ScholarGoogle Scholar

Index Terms

  1. Interactive authoring of simulation-ready plants

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 32, Issue 4
          July 2013
          1215 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/2461912
          Issue’s Table of Contents

          Copyright © 2013 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 21 July 2013
          Published in tog Volume 32, Issue 4

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader