Abstract
We present an algorithm for denoising triangulated models based on L0 minimization. Our method maximizes the flat regions of the model and gradually removes noise while preserving sharp features. As part of this process, we build a discrete differential operator for arbitrary triangle meshes that is robust with respect to degenerate triangulations. We compare our method versus other anisotropic denoising algorithms and demonstrate that our method is more robust and produces good results even in the presence of high noise.
Supplemental Material
- Bajaj, C. L., and Xu, G. 2003. Anisotropic diffusion of surfaces and functions on surfaces. ACM Trans. Graph. 22, 1, 4--32. Google Scholar
Digital Library
- Candes, E., Romberg, J., and Tao, T. 2006. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory 52, 2, 489--509. Google Scholar
Digital Library
- Clarenz, U., Diewald, U., and Rumpf, M. 2000. Anisotropic geometric diffusion in surface processing. VIS, 397--405. Google Scholar
Digital Library
- Desbrun, M., Meyer, M., Schröder, P., and Barr, A. H. 1999. Implicit fairing of irregular meshes using diffusion and curvature flow. SIGGRAPH, 317--324. Google Scholar
Digital Library
- Desbrun, M., Meyer, M., Schröder, P., and Barr, A. H. 2000. Anisotropic feature-preserving denoising of height fields and bivariate data. Graphics Interface, 145--152.Google Scholar
- Donoho, D. 2006. Compressed sensing. IEEE Transactions on Information Theory 52, 4, 1289--1306. Google Scholar
Digital Library
- Dziuk, G. 1990. An algorithm for evolutionary surfaces. Numerische Mathematik 58, 1, 603--611.Google Scholar
Digital Library
- El Ouafdi, A. F., Ziou, D., and Krim, H. 2008. A smart stochastic approach for manifolds smoothing. In Proceedings of the Symposium on Geometry Processing, 1357--1364. Google Scholar
Digital Library
- Fan, H., Yu, Y., and Peng, Q. 2010. Robust feature-preserving mesh denoising based on consistent subneighborhoods. IEEE Trans. Vis. Comp. Graph. 16, 2, 312--324. Google Scholar
Digital Library
- Fleishman, S., Drori, I., and Cohen-Or, D. 2003. Bilateral mesh denoising. SIGGRAPH, 950--953. Google Scholar
Digital Library
- Floater, M., Hormann, K., and Kos, G. 2006. A general construction of barycentric coordinates over convex polygons. Advances in Comp. Math 24, 311--331.Google Scholar
Cross Ref
- Hildebrandt, K., and Polthier, K. 2004. Anisotropic filtering of non-linear surface features. Computer Graphis Forum 23, 3, 391--400.Google Scholar
Cross Ref
- Jones, T. R., Durand, F., and Desbrun, M. 2003. Non-iterative, feature-preserving mesh smoothing. SIGGRAPH, 943--949. Google Scholar
Digital Library
- Kazhdan, M., Solomon, J., and Ben-Chen, M. 2012. Can mean-curvature flow be modified to be non-singular? Computer Graphics Forum 31, 5, 1745--1754. Google Scholar
Digital Library
- Kim, B., and Rossignac, J. 2005. Geofilter: Geometric selection of mesh filter parameters. Computer Graphis Forum 24, 3, 295--302.Google Scholar
Cross Ref
- Lee, K.-W., and Wang, W.-P. 2005. Feature-preserving mesh denoising via bilateral normal filtering. In Proceedings of Computer Aided Design and Computer Graphics, 275--280. Google Scholar
Digital Library
- Levoy, M., Pulli, K., Curless, B., Rusinkiewicz, S., Koller, D., Pereira, L., Ginzton, M., Anderson, S., Davis, J., Ginsberg, J., Shade, J., and Fulk, D. 2000. The digital michelangelo project: 3d scanning of large statues. SIGGRAPH, 131--144. Google Scholar
Digital Library
- Lipman, Y., Cohen-Or, D., Levin, D., and Tal-Ezer, H. 2007. Parameterization-free projection for geometry reconstruction. ACM Trans. Graph. 26, 3, 22:1--22:5. Google Scholar
Digital Library
- Liu, X., Bao, H., Shum, H.-Y., and Peng, Q. 2002. A novel volume constrained smoothing method for meshes. Graphical Models 64, 169--182. Google Scholar
Digital Library
- Mallet, J.-L. 1989. Discrete smooth interpolation. ACM Trans. Graph. 8, 2, 121--144. Google Scholar
Digital Library
- Nealen, A., Igarashi, T., Sorkine, O., and Alexa, M. 2006. Laplacian mesh optimization. GRAPHITE, 381--389. Google Scholar
Digital Library
- Pinkall, U., Juni, S. D., and Polthier, K. 1993. Computing discrete minimal surfaces and their conjugates. Experimental Mathematics 2, 15--36.Google Scholar
Cross Ref
- Schaefer, S., Ju, T., and Warren, J. 2007. A unified, integral construction for coordinates over closed curves. Computer Aided Geometric Design 24, 8-9, 481--493. Google Scholar
Digital Library
- Shen, Y., and Barner, K. E. 2004. Fuzzy vector median-based surface smoothing. IEEE Trans. Vis. Comp. Graph. 10, 3, 252--265. Google Scholar
Digital Library
- Sivan Toledo, D. C., and Rotkin, V. 2001. Taucs: A library of sparse linear solvers.Google Scholar
- Su, Z., Wang, H., and Cao, J. 2009. Mesh denoising based on differential coordinates. Shape Modeling International, 1--6.Google Scholar
- Sun, X., Rosin, P. L., Martin, R. R., and Langbein, F. C. 2007. Fast and effective feature-preserving mesh denoising. IEEE Trans. Vis. Comp. Graph., 925--938. Google Scholar
Digital Library
- Sun, X., Rosin, P. L., Martin, R. R., and Langbein, F. C. 2008. Random walks for feature-preserving mesh denoising. Computer Aided Geometric Design 25, 7, 437--456. Google Scholar
Digital Library
- Tasdizen, T., Whitaker, R., Burchard, P., and Osher, S. 2002. Geometric surface smoothing via anisotropic diffusion of normals. VIS, 125--132. Google Scholar
Digital Library
- Taubin, G. 1995. A signal processing approach to fair surface design. SIGGRAPH, 351--358. Google Scholar
Digital Library
- Taubin, G. 2001. Linear anisotropic mesh filtering. IBM Research Report RC22213(W0110-051).Google Scholar
- Tomasi, C., and Manduchi, R. 1998. Bilateral filtering for gray and color images. In Proceedings of the Sixth International Conference on Computer Vision, 839--846. Google Scholar
Digital Library
- Tschumperlé, D. 2006. Fast anisotropic smoothing of multivalued images using curvature-preserving pde's. Int. J. Comput. Vision 68, 1, 65--82. Google Scholar
Digital Library
- Vollmer, J., Mencl, R., and Mller, H. 1999. Improved laplacian smoothing of noisy surface meshes. Computer Graphics Forum 18, 3, 131--138.Google Scholar
Cross Ref
- Wang, C. C. L. 2006. Bilateral recovering of sharp edges on feature-insensitive sampled meshes. IEEE Trans. Vis. Comp. Graph. 12, 4, 629--639. Google Scholar
Digital Library
- Xu, L., Lu, C., Xu, Y., and Jia, J. 2011. Image smoothing via l0 gradient minimization. ACM Trans. Graph. 30, 6, 174:1--174:12. Google Scholar
Digital Library
- Yagou, H., Ohtake, Y., and Belyaev, A. 2002. Mesh smoothing via mean and median filtering applied to face normals. GMP, 124--131. Google Scholar
Digital Library
- Yagou, H., Ohtake, Y., and Belyaev, A. G. 2003. Mesh denoising via iterative alpha-trimming and nonlinear diffusion of normals with automatic thresholding. Computer Graphics International Conference, 28--33.Google Scholar
- Zheng, Y., Fu, H., Au, O. K.-C., and Tai, C.-L. 2011. Bilateral normal filtering for mesh denoising. IEEE Trans. Vis. Comp. Graph. 17, 10, 1521--1530. Google Scholar
Digital Library
Index Terms
Mesh denoising via L0 minimization
Recommendations
Bilateral mesh denoising
We present an anisotropic mesh denoising algorithm that is effective, simple and fast. This is accomplished by filtering vertices of the mesh in the normal direction using local neighborhoods. Motivated by the impressive results of bilateral filtering ...
Bilateral mesh denoising
SIGGRAPH '03: ACM SIGGRAPH 2003 PapersWe present an anisotropic mesh denoising algorithm that is effective, simple and fast. This is accomplished by filtering vertices of the mesh in the normal direction using local neighborhoods. Motivated by the impressive results of bilateral filtering ...
Mesh denoising via cascaded normal regression
We present a data-driven approach for mesh denoising. Our key idea is to formulate the denoising process with cascaded non-linear regression functions and learn them from a set of noisy meshes and their ground-truth counterparts. Each regression ...





Comments