skip to main content
research-article

Controlled-distortion constrained global parametrization

Published:21 July 2013Publication History
Skip Abstract Section

Abstract

The quality of a global parametrization is determined by a number of factors, including amount of distortion, number of singularities (cones), and alignment with features and boundaries. Placement of cones plays a decisive role in determining the overall distortion of the parametrization; at the same time, feature and boundary alignment also affect the cone placement. A number of methods were proposed for automatic choice of cone positions, either based on singularities of cross-fields and emphasizing alignment, or based on distortion optimization.

In this paper we describe a method for placing cones for seamless global parametrizations with alignment constraints. We use a close relation between variation-minimizing cross-fields and related 1-forms and conformal maps, and demonstrate how it leads to a constrained optimization problem formulation. We show for boundary-aligned parametrizations metric distortion may be reduced by cone chains, sometimes to an arbitrarily small value, and the trade-off between the distortion and the number of cones can be controlled by a regularization term. Constrained parametrizations computed using our method have significantly lower distortion compared to the state-of-the art field-based method, yet maintain feature and boundary alignment. In the most extreme cases, parametrization collapse due to alignment constraints is eliminated.

Skip Supplemental Material Section

Supplemental Material

tp172.mp4

References

  1. Ben-Chen, M., Gotsman, C., and Bunin, G. 2008. Conformal flattening by curvature prescription and metric scaling. Computer Graphics Forum 27, 2, 449--458.Google ScholarGoogle ScholarCross RefCross Ref
  2. Bommes, D., Zimmer, H., and Kobbelt, L. 2009. Mixed-integer quadrangulation. ACM Trans. Graph. 28, 3, 77. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bommes, D., Lvy, B., Pietroni, N., Puppo, E., Silva, C., Tarini, M., and Zorin, D. 2012. Quad Meshing. Eurographics Association, Cagliari, Sardinia, Italy, M.-P. Cani and F. Ganovelli, Eds., 159--182.Google ScholarGoogle Scholar
  4. Bunin, G. 2008. Towards unstructured mesh generation using the inverse poisson problem. arXiv preprint arXiv:0802.2399.Google ScholarGoogle Scholar
  5. Bunin, G. 2008. A continuum theory for unstructured mesh generation in two dimensions. CAGD 25, 14--40. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Cappell, S., DeTurck, D., Gluck, H., and Miller, E. 2006. Cohomology of harmonic forms on riemannian manifolds with boundary. In Forum Mathematicum, vol. 18, 923--932.Google ScholarGoogle ScholarCross RefCross Ref
  7. Carr, N., Hoberock, J., Crane, K., and Hart, J. 2006. Rectangular multi-chart geometry images. In Symposium on Geometry Processing, Eurographics Association, 190. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Crane, K., Desbrun, M., and Schröder, P. 2010. Trivial connections on discrete surfaces. Computer Graphics Forum 29, 5 (July), 1525--1533.Google ScholarGoogle ScholarCross RefCross Ref
  9. Daniels, J., Silva, C. T., and Cohen, E. 2009. Localized quadrilateral coarsening. Computer Graphics Forum 28, 5, 1437--1444. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Daniels II, J., Silva, C. T., and Cohen, E. 2009. Semiregular quadrilateralonly remeshing from simplified base domains. Computer Graphics Forum 28, 5 (July), 1427--1435. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. de Goes, F., and Crane, K., 2010. Trivial connections on discrete surfaces revisited: A simplied algorithm for simply-connected surfaces.Google ScholarGoogle Scholar
  12. Dindoš, M. 2008. Hardy Spaces and Potential Theory on C1 in Riemannian Manifolds. American Mathematical Soc.Google ScholarGoogle Scholar
  13. Dong, S., Bremer, P., Garland, M., Pascucci, V., and Hart, J. 2006. Spectral surface quadrangulation. ACM Trans. Graph. 25, 3, 1057--1066. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Eck, M., DeRose, T., Duchamp, T., Hoppe, H., Lounsbery, M., and Stuetzle, W. 1995. Multiresolution analysis of arbitrary meshes. SIGGRAPH 1995, 173--182. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Eppstein, D. 2003. Dynamic generators of topologically embedded graphs. In Proceedings of the fourteenth annual ACM-SIAM symposium on Discrete algorithms, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, SODA '03, 599--608. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Gu, X., and Yau, S.-T. 2003. Global conformal surface parameterization. In Proc. 2003 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, SGP '03, 127--137. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Jin, M., Wang, Y., Yau, S., and Gu, X. 2004. Optimal global conformal surface parameterization. In Proc. IEEE Visualiza-tion'04, 267--274. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Jin, M., Kim, J., Luo, F., and Gu, X. 2008. Discrete surface ricci flow. IEEE Trans. Visualization and Computer Graphics 14, 1030--1043. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Kälberer, F., Nieser, M., and Polthier, K. 2007. Quad-Cover: Surface Parameterization using Branched Coverings. Computer Graphics Forum 26, 3, 375--384.Google ScholarGoogle ScholarCross RefCross Ref
  20. Khodakovsky, A., Litke, N., and Schröder, P. 2003. Globally smooth parameterizations with low distortion. ACM Trans. Graph. 22, 3, 350--357. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Lai, Y., Jin, M., Xie, X., He, Y., Palacios, J., Zhang, E., Hu, S., and Gu, X. 2009. Metric-driven rosy field design and remeshing. IEEE Trans. Visualization and Computer Graphics, 95--108. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Lee, A., Sweldens, W., Schröder, P., Cowsar, L., and Dobkin, D. 1998. MAPS: multiresolution adaptive parameterization of surfaces. In SIGGRAPH 1998, 95--104. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Liu, L., Zhang, L., Xu, Y., Gotsman, C., and Gortler, S. J. 2008. A Local/Global approach to mesh parameterization. Computer Graphics Forum 27, 5 (July), 1495--1504. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Marinov, M., and Kobbelt, L. 2005. Automatic generation of structure preserving multiresolution models. Computer Graphics Forum 24, 3 (Sept.), 479--486.Google ScholarGoogle ScholarCross RefCross Ref
  25. Myles, A., and Zorin, D. 2012. Global parametrization by incremental flattening. ACM Transactions on Graphics (TOG) 31, 4, 109. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Myles, A., Pietroni, N., Kovacs, D., and Zorin, D. 2010. Feature-aligned T-meshes. ACM Trans. Graph. 29, 4, 1--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. O'Neill, B. 2006. Elementary Differential Geometry, Revised 2nd Edition. Elementary Differential Geometry Series. Elsevier Science.Google ScholarGoogle Scholar
  28. Palacios, J., and Zhang, E. 2007. Rotational symmetry field design on surfaces. ACM Trans. Graph. 26, 3 (July). Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Pietroni, N., Tarini, M., and Cignoni, P. 2009. Almost isometric mesh parameterization through abstract domains. IEEE Trans. Visualization and Computer Graphics 99, RapidPosts. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Pinkall, U., and Polthier, K. 1993. Computing discrete minimal surfaces and their conjugates. Experimental mathematics 2, 1, 15--36.Google ScholarGoogle Scholar
  31. Polthier, K. 2000. Conjugate harmonic maps and minimal surfaces. Preprint No. 446, TU-Berlin, SFB 288, 2000.Google ScholarGoogle Scholar
  32. Ray, N., Li, W., Lévy, B., Sheffer, A., and Alliez, P. 2006. Periodic global parameterization. ACM Trans. Graph. 25, 4, 1460--1485. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Ray, N., Vallet, B., Li, W., and Lévy, B. 2008. N-Symmetry direction field design. ACM Trans. Graph. 27, 2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Ray, N., Vallet, B., Alonso, L., and Levy, B. 2009. Geometry-aware direction field processing. ACM Trans. Graph. 29, 1, 1--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Springborn, B., Schröder, P., and Pinkall, U. 2008. Conformal equivalence of triangle meshes. ACM Trans. Graph. 27 (August), 77:1--77:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Tarini, M., Pietroni, N., Cignoni, P., Panozzo, D., and Puppo, E. 2010. Practical quad mesh simplification. Computer Graphics Forum 29, 2.Google ScholarGoogle ScholarCross RefCross Ref
  37. Tong, Y., Alliez, P., Cohen-Steiner, D., and Desbrun, M. 2006. Designing quadrangulations with discrete harmonic forms. Symposium on Geometry Processing, 201--210. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Controlled-distortion constrained global parametrization

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 32, Issue 4
        July 2013
        1215 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2461912
        Issue’s Table of Contents

        Copyright © 2013 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 21 July 2013
        Published in tog Volume 32, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader