Abstract
Good building layouts are required to conform to regulatory guidelines, while meeting certain quality measures. While different methods can sample the space of such good layouts, there exists little support for a user to understand and systematically explore the samples. Starting from a discrete set of good layouts, we analytically characterize the local shape space of good layouts around each initial layout, compactly encode these spaces, and link them to support transitions across the different local spaces. We represent such transitions in the form of a portal graph. The user can then use the portal graph, along with the family of local shape spaces, to globally and locally explore the space of good building layouts. We use our framework on a variety of different test scenarios to showcase an intuitive design, navigation, and exploration interface.
Supplemental Material
Available for Download
Supplemental material.
- Aliaga, D. G., Rosen, P. A., and Bekins, D. R. 2007. Style grammars for interactive visualization of architecture. IEEE TVCG 13, 4, 786--797. Google Scholar
Digital Library
- Beneš, B., Št'ava, O., Měch, R., and Miller, G. 2011. Guided procedural modeling. CGF (Eurographics) 30, 2, 325--334.Google Scholar
Cross Ref
- Bokeloh, M., Wand, M., and Seidel, H.-P. 2010. A connection between partial symmetry and inverse procedural modeling. ACM TOG (SIGGRAPH) 29, 4, 104:1--104:10. Google Scholar
Digital Library
- Borg, I., and Groenen, P. J. 2005. Modern Multidimensional Scaling Theory and Applications.Google Scholar
- Cabral, M., Lefebvre, S., Dachsbacher, C., and Drettakis, G. 2009. Structure-preserving reshape for textured architectural scenes. CGF (Eurographics) 28, 2, 469--480.Google Scholar
Cross Ref
- Coleman, K., 2007. Building optimization: An integrated approach to the design of tall buildings. master thesis, MIT.Google Scholar
- Eldar, Y., Lindenbaum, M., Porat, M., and Zeevi, Y. 1994. The farthest point strategy for progressive image sampling. In Pattern Recognition, vol. 3, 93--97.Google Scholar
- Gagne, J., and Andersen, M. 2010. Multi-objective façade optimization for daylighting design using a genetic algorithm. In SimBuild 2010.Google Scholar
- Habbecke, M., and Kobbelt, L. 2012. Linear analysis of nonlinear constraints for interactive geometric modeling. CGF (Eurographics) 31, 2, 641--650. Google Scholar
Digital Library
- Hale, E. T., and Long, N. L. 2010. Enumerating a diverse set of building designs using discrete optimization. In SimBuild 2010.Google Scholar
- Kilian, M., Mitra, N. J., and Pottmann, H. 2007. Geometric modeling in shape space. ACM TOG (SIGGRAPH) 26, 3, 64:1--64:8. Google Scholar
Digital Library
- Leblanc, L., Houle, J., and Poulin, P. 2011. Component-based modeling of complete buildings. In Graphics Interface 2011, 87--94. Google Scholar
Digital Library
- Lin, J., Cohen-Or, D., Zhang, H., Liang, C., Sharf, A., Deussen, O., and Chen, B. 2011. Structure-preserving retargeting of irregular 3D architecture. ACM TOG (SIGGRAPH Asia) 30, 6, 183:1--183:10. Google Scholar
Digital Library
- Lipp, M., Wonka, P., and Wimmer, M. 2008. Interactive visual editing of grammars for procedural architecture. ACM TOG (SIGGRAPH) 27, 3, 102:1--102:10. Google Scholar
Digital Library
- Liu, H., Yang, Y.-L., AlHalawani, S., and Mitra, N. J. 2013. Constraint-aware interior layout exploration for precast concrete-based buildings. The Visual Computer.Google Scholar
- Marks, J., Andalman, B., Beardsley, P., Freeman, W., Gibson, S., Hodgins, J., Kang, T., Mirtich, B., Pfister, H., Ruml, W., Ryall, K., Seims, J., and Shieber, S. 1997. Design galleries: a general approach to setting params. for computer graphics and animation. In Proc. SIGGRAPH, 389--400. Google Scholar
Digital Library
- Merrell, P., Schkufza, E., and Koltun, V. 2010. Computer-generated residential building layouts. ACM TOG (SIGGRAPH Asia) 29, 6, 181:1--181:12. Google Scholar
Digital Library
- Merrell, P., Schkufza, E., Li, Z., Agrawala, M., and Koltun, V. 2011. Interactive furniture layout using interior design guidelines. ACM TOG (SIGGRAPH) 30, 4, 87:1--87:9. Google Scholar
Digital Library
- Müller, P., Wonka, P., Haegler, S., Ulmer, A., and Gool, L. V. 2006. Procedural modeling of buildings. ACM TOG (SIGGRAPH) 25, 3, 614--623. Google Scholar
Digital Library
- Müller, P., Zeng, G., Wonka, P., and Gool, L. V. 2007. Image-based procedural modeling of facades. ACM TOG (SIGGRAPH) 26, 3, 85:1--85:9. Google Scholar
Digital Library
- Měch, R., and Prusinkiewicz, P. 1996. Visual models of plants interacting with their environment. In Proc. SIGGRAPH, 397--410. Google Scholar
Digital Library
- Parish, Y. I. H., and Müller, P. 2001. Procedural modeling of cities. In Proc. SIGGRAPH, 301--308. Google Scholar
Digital Library
- Prusinkiewicz, P., Mündermann, L., Karwowski, R., and Lane, B. 2001. The use of positional information in the modeling of plants. In Proc. SIGGRAPH, 289--300. Google Scholar
Digital Library
- Rafiq, M. Y., Mathews, J. D., and Bullock, G. N. 2003. Conceptual building design -- an evolutionary approach. ASCE Journal of Computing in Civil Engineering 17, 3, 150--158.Google Scholar
Cross Ref
- Shapira, L., Shamir, A., and Cohen-Or, D. 2009. Image appearance exploration by model-based navigation. CGF (Eurographics) 28, 2, 629--638.Google Scholar
Cross Ref
- Št'ava, O., Beneš, B., Měch, R., Aliaga, D. G., and Krištof, P. 2010. Inverse procedural modeling by automatic generation of L-systems. CGF (Eurographics) 29, 2, 665--674.Google Scholar
Cross Ref
- Talton, J. O., Gibson, D., Yang, L., Hanrahan, P., and Koltun, V. 2009. Exploratory modeling with collaborative design spaces. ACM TOG (SIGGRAPH Asia) 28, 5, 167:1--167:10. Google Scholar
Digital Library
- Talton, J. O., Lou, Y., Lesser, S., Duke, J., Měch, R., and Koltun, V. 2011. Metropolis procedural modeling. ACM TOG 30, 2, 11:1--11:14. Google Scholar
Digital Library
- Umetani, N., Igarashi, T., and Mitra, N. J. 2012. Guided exploration of physically valid shapes for furniture design. ACM TOG (SIGGRAPH) 31, 4, 86:1--86:11. Google Scholar
Digital Library
- Vanegas, C. A., Garcia-Dorado, I., Aliaga, D., Benes, B., and Waddell, P. 2012. Inverse design of urban procedural models. ACM TOG (SIGGRAPH Asia) 31, 6, 168:1--168:12. Google Scholar
Digital Library
- Whiting, E., Ochsendorf, J., and Durand, F. 2009. Procedural modeling of structurally-sound masonry buildings. ACM TOG (SIGGRAPH Asia) 28, 5, 112:1--112:9. Google Scholar
Digital Library
- Whiting, E., Shin, H., Wang, R., Ochsendorf, J., and Durand, F. 2012. Structural optimization of 3D masonry buildings. ACM TOG (SIGGRAPH Asia) 31, 6, 159:1--159:11. Google Scholar
Digital Library
- Wonka, P., Wimmer, M., Sillion, F. X., and Ribarsky, W. 2003. Instant architecture. ACM TOG (SIGGRAPH) 22, 3, 669--677. Google Scholar
Digital Library
- Yang, Y.-L., Yang, Y.-J., Pottmann, H., and Mitra, N. J. 2011. Shape space exploration of constrained meshes. ACM TOG (SIGGRAPH Asia) 30, 6, 124:1--124:12. Google Scholar
Digital Library
- Yeh, Y.-T., Yang, L., Watson, M., Goodman, N. D., and Hanrahan, P. 2012. Synthesizing open worlds with constraints using locally annealed reversible jump MCMC. ACM TOG (SIGGRAPH) 31, 4, 56:1--56:11. Google Scholar
Digital Library
- Yu, L.-F., Yeung, S.-K., Tang, C.-K., Terzopoulos, D., Chan, T. F., and Osher, S. 2011. Make it home: Automatic optimization of furniture arrangement. ACM TOG (SIGGRAPH) 30, 4, 86:1--86:11. Google Scholar
Digital Library
Index Terms
Generating and exploring good building layouts
Recommendations
Exploring shape spaces of 3D tree point clouds
Highlights- ORL tree shape space captures tree geometry in a natural way.
- Geodesics in ...
Graphical abstractDisplay Omitted
AbstractWe propose a framework for creating a shape space for biological trees from existing point clouds. Our method allows to freely explore the shapes between given input trees by computing arbitrary points on the geodesics induced by our ...
Geometric modeling in shape space
SIGGRAPH '07: ACM SIGGRAPH 2007 papersWe present a novel framework to treat shapes in the setting of Riemannian geometry. Shapes -- triangular meshes or more generally straight line graphs in Euclidean space -- are treated as points in a shape space. We introduce useful Riemannian metrics ...





Comments