skip to main content
research-article

Generating and exploring good building layouts

Published:21 July 2013Publication History
Skip Abstract Section

Abstract

Good building layouts are required to conform to regulatory guidelines, while meeting certain quality measures. While different methods can sample the space of such good layouts, there exists little support for a user to understand and systematically explore the samples. Starting from a discrete set of good layouts, we analytically characterize the local shape space of good layouts around each initial layout, compactly encode these spaces, and link them to support transitions across the different local spaces. We represent such transitions in the form of a portal graph. The user can then use the portal graph, along with the family of local shape spaces, to globally and locally explore the space of good building layouts. We use our framework on a variety of different test scenarios to showcase an intuitive design, navigation, and exploration interface.

Skip Supplemental Material Section

Supplemental Material

tp063.mp4

References

  1. Aliaga, D. G., Rosen, P. A., and Bekins, D. R. 2007. Style grammars for interactive visualization of architecture. IEEE TVCG 13, 4, 786--797. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Beneš, B., Št'ava, O., Měch, R., and Miller, G. 2011. Guided procedural modeling. CGF (Eurographics) 30, 2, 325--334.Google ScholarGoogle ScholarCross RefCross Ref
  3. Bokeloh, M., Wand, M., and Seidel, H.-P. 2010. A connection between partial symmetry and inverse procedural modeling. ACM TOG (SIGGRAPH) 29, 4, 104:1--104:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Borg, I., and Groenen, P. J. 2005. Modern Multidimensional Scaling Theory and Applications.Google ScholarGoogle Scholar
  5. Cabral, M., Lefebvre, S., Dachsbacher, C., and Drettakis, G. 2009. Structure-preserving reshape for textured architectural scenes. CGF (Eurographics) 28, 2, 469--480.Google ScholarGoogle ScholarCross RefCross Ref
  6. Coleman, K., 2007. Building optimization: An integrated approach to the design of tall buildings. master thesis, MIT.Google ScholarGoogle Scholar
  7. Eldar, Y., Lindenbaum, M., Porat, M., and Zeevi, Y. 1994. The farthest point strategy for progressive image sampling. In Pattern Recognition, vol. 3, 93--97.Google ScholarGoogle Scholar
  8. Gagne, J., and Andersen, M. 2010. Multi-objective façade optimization for daylighting design using a genetic algorithm. In SimBuild 2010.Google ScholarGoogle Scholar
  9. Habbecke, M., and Kobbelt, L. 2012. Linear analysis of nonlinear constraints for interactive geometric modeling. CGF (Eurographics) 31, 2, 641--650. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Hale, E. T., and Long, N. L. 2010. Enumerating a diverse set of building designs using discrete optimization. In SimBuild 2010.Google ScholarGoogle Scholar
  11. Kilian, M., Mitra, N. J., and Pottmann, H. 2007. Geometric modeling in shape space. ACM TOG (SIGGRAPH) 26, 3, 64:1--64:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Leblanc, L., Houle, J., and Poulin, P. 2011. Component-based modeling of complete buildings. In Graphics Interface 2011, 87--94. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Lin, J., Cohen-Or, D., Zhang, H., Liang, C., Sharf, A., Deussen, O., and Chen, B. 2011. Structure-preserving retargeting of irregular 3D architecture. ACM TOG (SIGGRAPH Asia) 30, 6, 183:1--183:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Lipp, M., Wonka, P., and Wimmer, M. 2008. Interactive visual editing of grammars for procedural architecture. ACM TOG (SIGGRAPH) 27, 3, 102:1--102:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Liu, H., Yang, Y.-L., AlHalawani, S., and Mitra, N. J. 2013. Constraint-aware interior layout exploration for precast concrete-based buildings. The Visual Computer.Google ScholarGoogle Scholar
  16. Marks, J., Andalman, B., Beardsley, P., Freeman, W., Gibson, S., Hodgins, J., Kang, T., Mirtich, B., Pfister, H., Ruml, W., Ryall, K., Seims, J., and Shieber, S. 1997. Design galleries: a general approach to setting params. for computer graphics and animation. In Proc. SIGGRAPH, 389--400. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Merrell, P., Schkufza, E., and Koltun, V. 2010. Computer-generated residential building layouts. ACM TOG (SIGGRAPH Asia) 29, 6, 181:1--181:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Merrell, P., Schkufza, E., Li, Z., Agrawala, M., and Koltun, V. 2011. Interactive furniture layout using interior design guidelines. ACM TOG (SIGGRAPH) 30, 4, 87:1--87:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Müller, P., Wonka, P., Haegler, S., Ulmer, A., and Gool, L. V. 2006. Procedural modeling of buildings. ACM TOG (SIGGRAPH) 25, 3, 614--623. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Müller, P., Zeng, G., Wonka, P., and Gool, L. V. 2007. Image-based procedural modeling of facades. ACM TOG (SIGGRAPH) 26, 3, 85:1--85:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Měch, R., and Prusinkiewicz, P. 1996. Visual models of plants interacting with their environment. In Proc. SIGGRAPH, 397--410. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Parish, Y. I. H., and Müller, P. 2001. Procedural modeling of cities. In Proc. SIGGRAPH, 301--308. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Prusinkiewicz, P., Mündermann, L., Karwowski, R., and Lane, B. 2001. The use of positional information in the modeling of plants. In Proc. SIGGRAPH, 289--300. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Rafiq, M. Y., Mathews, J. D., and Bullock, G. N. 2003. Conceptual building design -- an evolutionary approach. ASCE Journal of Computing in Civil Engineering 17, 3, 150--158.Google ScholarGoogle ScholarCross RefCross Ref
  25. Shapira, L., Shamir, A., and Cohen-Or, D. 2009. Image appearance exploration by model-based navigation. CGF (Eurographics) 28, 2, 629--638.Google ScholarGoogle ScholarCross RefCross Ref
  26. Št'ava, O., Beneš, B., Měch, R., Aliaga, D. G., and Krištof, P. 2010. Inverse procedural modeling by automatic generation of L-systems. CGF (Eurographics) 29, 2, 665--674.Google ScholarGoogle ScholarCross RefCross Ref
  27. Talton, J. O., Gibson, D., Yang, L., Hanrahan, P., and Koltun, V. 2009. Exploratory modeling with collaborative design spaces. ACM TOG (SIGGRAPH Asia) 28, 5, 167:1--167:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Talton, J. O., Lou, Y., Lesser, S., Duke, J., Měch, R., and Koltun, V. 2011. Metropolis procedural modeling. ACM TOG 30, 2, 11:1--11:14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Umetani, N., Igarashi, T., and Mitra, N. J. 2012. Guided exploration of physically valid shapes for furniture design. ACM TOG (SIGGRAPH) 31, 4, 86:1--86:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Vanegas, C. A., Garcia-Dorado, I., Aliaga, D., Benes, B., and Waddell, P. 2012. Inverse design of urban procedural models. ACM TOG (SIGGRAPH Asia) 31, 6, 168:1--168:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Whiting, E., Ochsendorf, J., and Durand, F. 2009. Procedural modeling of structurally-sound masonry buildings. ACM TOG (SIGGRAPH Asia) 28, 5, 112:1--112:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Whiting, E., Shin, H., Wang, R., Ochsendorf, J., and Durand, F. 2012. Structural optimization of 3D masonry buildings. ACM TOG (SIGGRAPH Asia) 31, 6, 159:1--159:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Wonka, P., Wimmer, M., Sillion, F. X., and Ribarsky, W. 2003. Instant architecture. ACM TOG (SIGGRAPH) 22, 3, 669--677. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Yang, Y.-L., Yang, Y.-J., Pottmann, H., and Mitra, N. J. 2011. Shape space exploration of constrained meshes. ACM TOG (SIGGRAPH Asia) 30, 6, 124:1--124:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Yeh, Y.-T., Yang, L., Watson, M., Goodman, N. D., and Hanrahan, P. 2012. Synthesizing open worlds with constraints using locally annealed reversible jump MCMC. ACM TOG (SIGGRAPH) 31, 4, 56:1--56:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Yu, L.-F., Yeung, S.-K., Tang, C.-K., Terzopoulos, D., Chan, T. F., and Osher, S. 2011. Make it home: Automatic optimization of furniture arrangement. ACM TOG (SIGGRAPH) 30, 4, 86:1--86:11. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Generating and exploring good building layouts

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 32, Issue 4
        July 2013
        1215 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2461912
        Issue’s Table of Contents

        Copyright © 2013 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 21 July 2013
        Published in tog Volume 32, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader