skip to main content
research-article

Practical SVBRDF capture in the frequency domain

Published:21 July 2013Publication History
Skip Abstract Section

Abstract

Spatially-varying reflectance and small geometric variations play a vital role in the appearance of real-world surfaces. Consequently, robust, automatic capture of such models is highly desirable; however, current systems require either specialized hardware, long capture times, user intervention, or rely heavily on heuristics. We describe an acquisition setup that utilizes only portable commodity hardware (an LCD display, an SLR camera) and contains no moving parts. In particular, a laptop screen can be used for illumination. Our setup, aided by a carefully constructed image formation model, automatically produces realistic spatially-varying reflectance parameters over a wide range of materials from diffuse to almost mirror-like specular surfaces, while requiring relatively few photographs. We believe our system is the first to offer such generality, while requiring only standard office equipment and no user intervention or parameter tuning. Our results exhibit a good qualitative match to photographs taken under novel viewing and lighting conditions for a range of materials.

Skip Supplemental Material Section

Supplemental Material

tp068.mp4

References

  1. Blinn, J. F. 1977. Models of light reflection for computer synthesized pictures. Computer Graphics (Proc. SIGGRAPH) 11, 2 (July), 192--198. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Bonfort, T., Sturm, P., and Gargallo, P. 2006. General specular surface triangulation. In Proc. Asian Conference on Computer Vision, vol. II, 872--881. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Chen, T., Goesele, M., and Seidel, H.-P. 2006. Mesostructure from specularity. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, 1825--1832. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Chuang, Y.-Y., Zongker, D. E., Hindorff, J., Curless, B., Salesin, D. H., and Szeliski, R. 2000. Environment matting extensions: towards higher accuracy and real-time capture. In Proc. SIGGRAPH, 121--130. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Clark, R., 2010. Crazybump, www.crazybump.com.Google ScholarGoogle Scholar
  6. Coleman, E., and Jain, R. 1982. Obtaining 3-dimensional shape of textured and specular surfaces using four-source photometry. Computer Graphics and Image Processing 18, 309--328.Google ScholarGoogle ScholarCross RefCross Ref
  7. Dana, K. J., and Wang, J. 2004. Device for convenient measurement of spatially varying bidirectional reflectance. Journal of the Optical Society of America A 21, 1, 1--12.Google ScholarGoogle ScholarCross RefCross Ref
  8. Dong, Y., Wang, J., Tong, X., Snyder, J., Lan, Y., Ben-Ezra, M., and Guo, B. 2010. Manifold bootstrapping for SVBRDF capture. ACM Transactions on Graphics (Proc. SIGGRAPH) 29, 4 (July), 98:1--98:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Dong, Y., Tong, X., Pellacini, F., and Guo, B. 2011. Appgen: interactive material modeling from a single image. ACM Transactions on Graphics (Proc. SIGGRAPH ASIA) 30, 6 (Dec.), 146:1--146:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Francken, Y., Cuypers, T., Mertens, T., and Gielis, J. 2008. High quality mesostructure acquisition using specularities. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, 1--7.Google ScholarGoogle Scholar
  11. Gardner, A., Tchou, C., Hawkins, T., and Debevec, P. 2003. Linear light source reflectometry. ACM Transactions on Graphics (Proc. SIGGRAPH) 22, 3 (July), 749--758. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Ghosh, A., Achutha, S., Heidrich, W., and O'Toole, M. 2007. BRDF acquisition with basis illumination. In Proc. IEEE International Conference on Computer Vision, 1--8.Google ScholarGoogle ScholarCross RefCross Ref
  13. Ghosh, A., Chen, T., Peers, P., Wilson, C. A., and Debevec, P. E. 2009. Estimating specular roughness and anisotropy from second order spherical gradient illumination. Computer Graphics Forum (Proc. Eurographics Symposium on Rendering) 28, 4, 1161--1170. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Ghosh, A., Chen, T., Peers, P., Wilson, C. A., and Debevec, P. 2010. Circularly polarized spherical illumination reflectometry. ACM Transactions on Graphics (Proc. SIGGRAPH ASIA) 29, 6 (Dec.), 162:1--162:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Glencross, M., Ward, G., Jay, C., Liu, J., Melendez, F., and Hubbold, R. 2008. A perceptually validated model for surface depth hallucination. ACM Transactions on Graphics (Proc. SIGGRAPH) 27, 3 (Aug.), 59:1--59:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Goldman, D., Curless, B., Hertzmann, A., and Seitz, S. 2005. Shape and spatially-varying BRDFs from photometric stereo. In Proc. IEEE International Conference on Computer Vision, vol. 1, 341--348. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Holroyd, M., Lawrence, J., Humphreys, G., and Zickler, T. 2008. A photometric approach for estimating normals and tangents. ACM Transactions on Graphics (Proc. SIGGRAPH) 27, 3 (Dec.), 133:1--133:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Holroyd, M., Lawrence, J., and Zickler, T. 2010. A coaxial optical scanner for synchronous acquisition of 3D geometry and surface reflectance. ACM Transactions on Graphics (Proc. SIGGRAPH) 29, 4 (July), 99:1--99:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Ikeuchi, K. 1981. Determining surface orientation of specular surfaces by using the photometric stereo method. IEEE Transactions on Pattern Analysis and Machine Intelligence 3, 6, 661--669. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Kopf, J., Cohen, M. F., Lischinski, D., and Uyttendaele, M. 2007. Joint bilateral upsampling. ACM Transactions on Graphics (Proc. SIGGRAPH) 26, 3 (July), 96:1--96:6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Lawrence, J., Ben-Artzi, A., DeCoro, C., Matusik, W., Pfister, H., Ramamoorthi, R., and Rusinkiewicz, S. 2006. Inverse shade trees for non-parametric material representation and editing. ACM Transactions on Graphics (Proc. SIGGRAPH) 25, 3 (July), 735--745. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Lensch, H. P. A., Kautz, J., Goesele, M., Heidrich, W., and Seidel, H.-P. 2003. Image-based reconstruction of spatial appearance and geometric detail. ACM Transactions on Graphics 22, 2 (Apr.), 234--257. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Löw, J., Kronander, J., Ynnerman, A., and Unger, J. 2012. BRDF models for accurate and efficient rendering of glossy surfaces. ACM Transactions on Graphics 31, 1 (Jan.), 9:1--9:14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Nayar, S., Ikeuchi, K., and Kanade, T. 1990. Determining shape and reflectance of hybrid surfaces by photometric sampling. IEEE Transactions on Robotics and Automation 6, 4, 418--431.Google ScholarGoogle ScholarCross RefCross Ref
  25. Nehab, D., Weyrich, T., and Rusinkiewicz, S. 2008. Dense 3D reconstruction from specular consistency. In Proc. IEEE Conference on Computer Vision and Pattern Recognition, 1--8.Google ScholarGoogle Scholar
  26. Ngan, A., Durand, F., and Matusik, W. 2005. Experimental analysis of BRDF models. In Proc. Eurographics Symposium on Rendering, 117--226. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Ramamoorthi, R., and Hanrahan, P. 2001. A signal processing framework for inverse rendering. In Proc. SIGGRAPH, 117--128. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Ren, P., Wang, J., Snyder, J., Tong, X., and Guo, B. 2011. Pocket reflectometry. ACM Transactions on Graphics (Proc. SIGGRAPH) 30, 4 (July), 45:1--45:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Sato, I., Okabe, T., Sato, Y., and Ikeuchi, K. 2003. Appearance sampling for obtaining a set of basis images for variable illumination. In Proc. IEEE International Conference on Computer Vision, 800--807 Vol. 2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Wang, C.-P., Snavely, N., and Marschner, S. 2011. Estimating dual-scale properties of glossy surfaces from step-edge lighting. ACM Transactions on Graphics (Proc. SIGGRAPH ASIA) 30, 6 (Dec.), 172:1--172:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Weyrich, T., Matusik, W., Pfister, H., Bickel, B., Donner, C., Tu, C., McAndless, J., Lee, J., Ngan, A., Jensen, H. W., and Gross, M. 2006. Analysis of human faces using a measurement-based skin reflectance model. ACM Transactions on Graphics (Proc. SIGGRAPH) 25, 3 (July), 1013--1024. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Weyrich, T., Lawrence, J., Lensch, H., Rusinkiewicz, S., and Zickler, T. 2008. Principles of appearance acquisition and representation. Foundations and Trends in Computer Graphics and Vision 4, 2, 75--191. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Woodham, R. J. 1978. Photometric stereo: A reflectance map technique for determining surface orientation from image intensity. In Proc. SPIE, vol. 155, 136--143.Google ScholarGoogle Scholar
  34. Zhu, J., and Yang, Y.-H. 2004. Frequency-based environment matting. In Computer Graphics and Applications (Proc. Pacific Graphics), 402--410. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Zickler, T., Belhumeur, P. N., and Kriegman, D. J. 2002. Helmholtz stereopsis: Exploiting reciprocity for surface reconstruction. International Journal of Computer Vision 49, 2/3, 215--227. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Practical SVBRDF capture in the frequency domain

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 32, Issue 4
      July 2013
      1215 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/2461912
      Issue’s Table of Contents

      Copyright © 2013 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 21 July 2013
      Published in tog Volume 32, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader