skip to main content
research-article

Computational design of actuated deformable characters

Published:21 July 2013Publication History
Skip Abstract Section

Abstract

We present a method for fabrication-oriented design of actuated deformable characters that allows a user to automatically create physical replicas of digitally designed characters using rapid manufacturing technologies. Given a deformable character and a set of target poses as input, our method computes a small set of actuators along with their locations on the surface and optimizes the internal material distribution such that the resulting character exhibits the desired deformation behavior. We approach this problem with a dedicated algorithm that combines finite-element analysis, sparse regularization, and constrained optimization. We validate our pipeline on a set of two- and three-dimensional example characters and present results in simulation and physically-fabricated prototypes.

Skip Supplemental Material Section

Supplemental Material

References

  1. Bächer, M., Bickel, B., James, D. L., and Pfister, H. 2012. Fabricating articulated characters from skinned meshes. ACM Trans. Graph. (Proc. SIGGRAPH) 31, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Bendsoe, M. P., and Sigmund, O. 2004. Topology Optimization. Springer.Google ScholarGoogle Scholar
  3. Bickel, B., Bächer, M., Otaduy, M. A., Matusik, W., Pfister, H., and Gross, M. 2009. Capture and modeling of non-linear heterogeneous soft tissue. ACM Trans. Graph. (Proc. SIGGRAPH) 28, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Bickel, B., Bächer, M., Otaduy, M. A., Lee, H. R., Pfister, H., Gross, M., and Matusik, W. 2010. Design and fabrication of materials with desired deformation behavior. ACM Trans. Graph. (Proc. SIGGRAPH) 29, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bickel, B., Kaufmann, P., Skouras, M., Thomaszewski, B., Bradley, D., Beeler, T., Jackson, P., Marschner, S., Matusik, W., and Gross, M. 2012. Physical face cloning. ACM Trans. Graph. (Proc. SIGGRAPH) 31, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Calì, J., Calian, D. A., Amati, C., Kleinberger, R., Steed, A., Kautz, J., and Weyrich, T. 2012. 3d-printing of non-assembly, articulated models. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 31, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Dong, Y., Wang, J., Pellacini, F., Tong, X., and Guo, B. 2010. Fabricating spatially-varying subsurface scattering. ACM Trans. Graph. (Proc. SIGGRAPH) 29, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Hart, J. C., Baker, B., and Michaelraj, J. 2003. Structural simulation of tree growth and response. The Visual Computer.Google ScholarGoogle Scholar
  9. Hasan, M., Fuchs, M., Matusik, W., Pfister, H., and Rusinkiewicz, S. 2010. Physical reproduction of materials with specified subsurface scattering. ACM Trans. Graph. (Proc. SIGGRAPH) 29, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Haslinger, J., and Mäkinen, R. A. E. 2003. Introduction to Shape Optimization. SIAM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Lau, M., Ohgawara, A., Mitani, J., and Igarashi, T. 2011. Converting 3d furniture models to fabricatable parts and connectors. ACM Trans. Graph. (Proc. SIGGRAPH) 30, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Malzbender, T., Samadani, R., Scher, S., Crume, A., Dunn, D., and Davis, J. 2012. Printing reflectance functions. ACM Trans. Graph. 31, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Martin, S., Thomaszewski, B., Grinspun, E., and Gross, M. 2011. Example-based elastic materials. ACM Trans. Graph. (Proc. SIGGRAPH) 30, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. McLaughlin, T., Cutler, L., and Coleman, D. 2011. Character rigging, deformations, and simulations in film and game production. In ACM SIGGRAPH 2011 Courses. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Mori, Y., and Igarashi, T. 2007. Plushie: An interactive design system for plush toys. ACM Trans. Graph. (Proc. SIGGRAPH) 26, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Narain, R., Samii, A., and O'Brien, J. F. 2012. Adaptive anisotropic remeshing for cloth simulation. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 31, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Nealen, A., Müller, M., Keiser, R., Boxerman, E., and Carlson, M. 2006. Physically based deformable models in computer graphics. Computer Graphics Forum 25, 4.Google ScholarGoogle ScholarCross RefCross Ref
  18. Nocedal, J., and Wright, S. J. 2000. Numerical Optimization. Springer.Google ScholarGoogle Scholar
  19. Öztireli, C., Guennebaud, G., and Gross, M. 2009. Feature preserving point set surfaces based on non-linear kernel regression. Computer Graphics Forum (Proc. Eurographics) 28, 2.Google ScholarGoogle ScholarCross RefCross Ref
  20. Rozvany, G. 2009. A critical review of established methods of structural topology optimization. Structural and Multidisciplinary Optimization 37, 3.Google ScholarGoogle ScholarCross RefCross Ref
  21. Skouras, M., Thomaszewski, B., Bickel, B., and Gross, M. 2012. Computational design of rubber balloons. Computer Graphics Forum (Proc. Eurographics) 31, 2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Smith, J., Hodgins, J. K., Oppenheim, I., and Witkin, A. 2002. Creating models of truss structures with optimization. ACM Trans. Graph. (Proc. SIGGRAPH) 21, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Stava, O., Vanek, J., Benes, B., Carr, N., and Měch, R. 2012. Stress relief: improving structural strength of 3d printable objects. ACM Trans. Graph. (Proc. SIGGRAPH) 31, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Umetani, N., Igarashi, T., and Mitra, N. J. 2012. Guided exploration of physically valid shapes for furniture design. ACM Trans. Graph. (Proc. SIGGRAPH) 31, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Weyrich, T., Peers, P., Matusik, W., and Rusinkiewicz, S. 2009. Fabricating microgeometry for custom surface reflectance. ACM Trans. Graph. (Proc. SIGGRAPH) 28, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Whiting, E., Shin, H., Wang, R., Ochsendorf, J., and Durand, F. 2012. Structural optimization of 3d masonry buildings. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 31, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Xin, S., Lai, C.-F., Fu, C.-W., Wong, T.-T., He, Y., and Cohen-Or, D. 2011. Making burr puzzles from 3d models. ACM Trans. Graph. (Proc. SIGGRAPH) 30, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Zhu, L., Xu, W., Snyder, J., Liu, Y., Wang, G., and Guo, B. 2012. Motion-guided mechanical toy modeling. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 31, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Computational design of actuated deformable characters

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 32, Issue 4
        July 2013
        1215 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2461912
        Issue’s Table of Contents

        Copyright © 2013 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 21 July 2013
        Published in tog Volume 32, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader