skip to main content
research-article

Path-space manipulation of physically-based light transport

Published:21 July 2013Publication History
Skip Abstract Section

Abstract

Industry-quality content creation relies on tools for lighting artists to quickly prototype, iterate, and refine final renders. As industry-leading studios quickly adopt physically-based rendering (PBR) across their art generation pipelines, many existing tools have become unsuitable as they address only simple effects without considering underlying PBR concepts and constraints. We present a novel light transport manipulation technique that operates directly on path-space solutions of the rendering equation. We expose intuitive direct and indirect manipulation approaches to edit complex effects such as (multi-refracted) caustics, diffuse and glossy indirect bounces, and direct/indirect shadows. With our sketch- and object-space selection, all built atop a parameterized regular expression engine, artists can search and isolate shading effects to inspect and edit. We classify and filter paths on the fly and visualize the selected transport phenomena. We survey artists who used our tool to manipulate complex phenomena on both static and animated scenes.

Skip Supplemental Material Section

Supplemental Material

tp069.mp4

References

  1. Banks, D. C. 1994. Illumination in diverse codimensions. In SIGGRAPH'94, 327--334. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Barzel, R. 1997. Lighting controls for computer cinematography. Journal of Graphics Tools 2, 1, 1--20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Hachisuka, T., and Jensen, H. W. 2009. Stochastic progressive photon mapping. ACM Transactions on Graphics (Proc. SIGGRAPH) 28, 141:1--141:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Heckbert, P. S. 1990. Adaptive radiosity textures for bidirectional ray tracing. Computer Graphics (Proc. SIGGRAPH) 24, 4, 145--154. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Holten, D., and van Wijk, J. J. 2009. Force-directed edge bundling for graph visualization. Computer Graphics Forum 28, 3, 983--990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Kerr, W. B., and Pellacini, F. 2009. Toward evaluating lighting design interface paradigms for novice users. ACM Transactions on Graphics (Proc. SIGGRAPH) 28, 3, 1--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Kerr, W. B., Pellacini, F., and Denning, J. D. 2010. Bendy-lights: artistic control of direct illumination by curving light rays. Computer Graphics Forum (Proc. EG Symposium on Rendering) 29, 4, 1451--1459. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Křivánek, J., Fajardo, M., Christensen, P. H., Tabellion, E., Bunnell, M., Larsson, D., and Kaplanyan, A. 2010. Global illumination across industries. In ACM SIGGRAPH Courses.Google ScholarGoogle Scholar
  9. Lafortune, E. P., and Willems, Y. D. 1993. Bi-directional path tracing. In Proc. Conference on Computational Graphics and Visualization Techniques, 145--153.Google ScholarGoogle Scholar
  10. Larson, G. W., and Shakespeare, R. 1998. Rendering with radiance: the art and science of lighting visualization. Morgan Kaufmann Publishers. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Lee, C. H., Hao, X., and Varshney, A. 2006. Geometry-dependent lighting. IEEE Transactions on Visualization and Computer Graphics 12, 2, 197--207. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. McAuley, S., Hill, S., Hoffman, N., Gotanda, Y., Smits, B., Burley, B., and Martinez, A. 2012. Practical physically-based shading in film and game production. In ACM SIGGRAPH Courses. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Nowrouzezahrai, D., Johnson, J., Selle, A., Lacewell, D., Kaschalk, M., and Jarosz, W. 2011. A programmable system for artistic volumetric lighting. ACM Transactions on Graphics (Proc. SIGGRAPH) 30, 4, 29:1--29:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Obert, J., Krivánek, J., Pellacini, F., Sýkora, D., and Pattanaik, S. N. 2008. iCheat: A representation for artistic control of indirect cinematic lighting. Computer Graphics Forum (Proc. EG Symposium on Rendering) 27, 4, 1217--1223. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Obert, J., Pellacini, F., and Pattanaik, S. N. 2010. Visibility editing for all-frequency shadow design. Computer Graphics Forum 29, 4, 1441--1449. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Okabe, M., Matsushita, Y., Shen, L., and Igarashi, T. 2007. Illumination brush: Interactive design of all-frequency lighting. In Proc. Pacific Graphics, 171--180. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Pellacini, F., Tole, P., and Greenberg, D. P. 2002. A user interface for interactive cinematic shadow design. ACM Transactions on Graphics (Proc. SIGGRAPH) 21, 3, 563--566. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Pellacini, F., Battaglia, F., Morley, K., and Finkelstein, A. 2007. Lighting with paint. ACM Transactions on Graphics 26, 2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Pellacini, F. 2010. envyLight: an interface for editing natural illumination. ACM Transactions on Graphics (Proc. SIGGRAPH) 29, 4, 34:1--34:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Pharr, M., and Humphreys, G. 2010. Physically Based Rendering, Second Edition: From Theory To Implementation. Morgan Kaufmann Publishers. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Poulin, P., and Fournier, A. 1992. Lights from highlights and shadows. In Proc. ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, 31--38. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Reiner, T., Kaplanyan, A., Reinhard, M., and Dachsbacher, C. 2012. Selective inspection and interactive visualization of light transport in virtual scenes. Computer Graphics Forum (Proc. Eurographics) 31, 2, 711--718. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Ritschel, T., Okabe, M., Thormählen, T., and Seidel, H.-P. 2009. Interactive reflection editing. ACM Transactions on Graphics (Proc. SIGGRAPH Asia) 28, 5, 129:1--129:7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Ritschel, T., Thormählen, T., Dachsbacher, C., Kautz, J., and Seidel, H.-P. 2010. Interactive on-surface signal deformation. ACM Transactions on Graphics (Proc. SIGGRAPH) 29, 4, 36:1--36:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Tabellion, E., and Lamorlette, A. 2004. An approximate global illumination system for computer generated films. ACM Transactions on Graphics (Proc. SIGGRAPH) 23, 3, 469--476. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Veach, E., and Guibas, L. 1994. Bidirectional estimators for light transport. In Proc. EG Workshop on Rendering, 147--162.Google ScholarGoogle Scholar
  27. Veach, E., and Guibas, L. J. 1997. Metropolis light transport. In SIGGRAPH'97, 65--76. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Veach, E. 1998. Robust monte carlo methods for light transport simulation. PhD thesis. AAI9837162. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Path-space manipulation of physically-based light transport

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 32, Issue 4
          July 2013
          1215 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/2461912
          Issue’s Table of Contents

          Copyright © 2013 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 21 July 2013
          Published in tog Volume 32, Issue 4

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader