Abstract
Recent attempts to fabricate surfaces with custom reflectance functions boast impressive angular resolution, yet their spatial resolution is limited. In this paper we present a method to construct spatially varying reflectance at a high resolution of up to 220dpi, orders of magnitude greater than previous attempts, albeit with a lower angular resolution. The resolution of previous approaches is limited by the machining, but more fundamentally, by the geometric optics model on which they are built. Beyond a certain scale geometric optics models break down and wave effects must be taken into account. We present an analysis of incoherent reflectance based on wave optics and gain important insights into reflectance design. We further suggest and demonstrate a practical method, which takes into account the limitations of existing micro-fabrication techniques such as photolithography to design and fabricate a range of reflection effects, based on wave interference.
Supplemental Material
Available for Download
Supplemental material.
- Alldrin, N., and Kriegman., D. 2006. A planar light probe. In CVPR, 2324--2330. Google Scholar
Digital Library
- Ashikhmin, M., Premoze, S., and Shirley, P. 2000. A microfacet-based BRDF generator. In ACM SIGGRAPH, 65--74. Google Scholar
Digital Library
- Beckmann, P., and Spizzichino, A. 1963. The scattering of electromagnetic waves from rough surfaces. International series of monographs on electromagnetic waves. Pergamon Press.Google Scholar
- Benton, S. A., and Bove, V. M. 2008. Holographic Imaging. Wiley-Interscience. Google Scholar
Digital Library
- Cuypers, T., Haber, T., Bekaert, P., Oh, S. B., and Raskar, R. 2012. Reflectance model for diffraction. ACM Trans. Graph. 31, 5, 122. Google Scholar
Digital Library
- Dong, Y., Wang, J., Pellacini, F., Tong, X., and Guo, B. 2010. Fabricating spatially-varying subsurface scattering. ACM Trans. Graph. 29, 4 (July), 62:1--62:10. Google Scholar
Digital Library
- Finckh, M., Dammertz, H., and Lensch, H. P. A. 2010. Geometry construction from caustic images. In ECCV, Springer-Verlag, 464--477. Google Scholar
Digital Library
- Goodman, J. W. 1968. Introduction to Fourier Optics. McGraw-Hill Book Company.Google Scholar
- Hašan, M., Fuchs, M., Matusik, W., Pfister, H., and Rusinkiewicz, S. 2010. Physical reproduction of materials with specified subsurface scattering. ACM SIGGRAPH 29, 3, 61:1--61:10. Google Scholar
Digital Library
- He, X. D., Torrance, K. E., Sillion, F. X., and Greenberg, D. P. 1991. A comprehensive physical model for light reflection. SIGGRAPH 25, 4, 175--186. Google Scholar
Digital Library
- Iwata, F., and Tsujiuchi, J. 1974. Characteristics of a photoresist hologram and its replica. Appl. Opt. 13, 6 (Jun), 1327--1336.Google Scholar
- Johnson, M. K., Cole, F., Raj, A., and Adelson, E. H. 2011. Microgeometry capture using an elastomeric sensor. ACM SIGGRAPH 30, 4, 46:1--46:8. Google Scholar
Digital Library
- Kiser, T., Eigensatz, M., Nguyen, M. M., Bompas, P., and Pauly, M. 2012. Architectural caustics controlling light with geometry. In Advances in Architectural Geometry.Google Scholar
- Koenderink, J., Doorn, A. V., Dana, K., and Nayar, S. 1999. Bidirectional Reflectance Distribution Function of Thoroughly Pitted Surfaces. ICCV 31, 2/3, 129--144. Google Scholar
Digital Library
- Kress, B. C., and Meyrueis, P. 2009. Dynamic Digital Optics. John Wiley & Sons, Ltd, 217--252.Google Scholar
- Levin, A., Glasner, D., Xiong, Y., Durand, F., Freeman, W., Matusik, W., and Zickler, T. 2013. High spatial resolution BRDFs with metallic powders using wave optics analysis. MIT CSAIL TR 2013--008.Google Scholar
- Lucente, M., and Galyean, T. A. 1995. Rendering interactive holographic images. In SIGGRAPH, 387--394. Google Scholar
Digital Library
- Malzbender, T., Samadani, R., Scher, S., Crume, A., Dunn, D., and Davis, J. 2012. Printing reflectance functions. ACM Trans. Graph. 31, 3, 20:1--20:11. Google Scholar
Digital Library
- Matsushima, K. 2005. Computer-generated holograms for three-dimensional surface objects with shade and texture. Appl. Opt. 44, 22 (Aug), 4607--4614.Google Scholar
Cross Ref
- Matusik, W., Ajdin, B., Gu, J., Lawrence, J., Lensch, H. P., Pellacini, F., and Rusinkiewicz, S. 2009. Printing spatially-varying reflectance. ACM SIGGRAPH Asia 28, 5 (Dec.), 128:1--128:9. Google Scholar
Digital Library
- Nayar, S., K. Ikeuchi, and Kanade, T. 1991. Surface Reflection: Physical and Geometrical Perspectives. PAMI 13, 7 (Jul), 611--634. Google Scholar
Digital Library
- Oren, M., and Nayar, S. 1994. Generalization of Lambert's Reflectance Model. In ACM SIGGRAPH, 239--246. Google Scholar
Digital Library
- Papas, M., Jarosz, W., Jakob, W., Rusinkiewicz, S., Matusik, W., and Weyrich, T. 2011. Goal-based caustics. Eurographics 30, 2 (Apr.), 503--511.Google Scholar
Cross Ref
- Patow, G., and Pueyo, X. 2005. A survey of inverse surface design from light transport behavior specification. Comput. Graph. Forum 24, 4, 773--789.Google Scholar
Cross Ref
- Patow, G., Pueyo, X., and Vinacua, A. 2007. User-guided inverse reflector design. Comput. Graph. 31, 3 (June), 501--515. Google Scholar
Digital Library
- Pont, S. C., and Koenderink, J. J. 2005. Reflectance from locally glossy thoroughly pitted surfaces. Computer Vision and Image Understanding 98, 2, 211--222. Google Scholar
Digital Library
- Ren, P., Wang, J., Snyder, J., Tong, X., and Guo, B. 2011. Pocket reflectometry. In ACM SIGGRAPH, 45:1--45:10. Google Scholar
Digital Library
- Rusinkiewicz, S. 1998. A new change of variables for efficient BRDF representation. In Rendering Techniques (Proc. Eurographics Workshop on Rendering).Google Scholar
Cross Ref
- Sancer, M. 1969. Shadow-corrected electromagnetic scattering from a randomly rough surface. IEEE Transactions on Antennas and Propagation 17, 5 (sep), 577--585.Google Scholar
Cross Ref
- Sinzinger, S., and Jahns, J. 2006. Microoptics. John Wiley and Sons.Google Scholar
- Stam, J. 1999. Diffraction shaders. In ACM SIGGRAPH, 101--110. Google Scholar
Digital Library
- Torrance, K. E., and Sparrow, E. M. 1967. Theory for off-specular reflection from roughened surfaces. J. Opt. Soc. Am. 57, 9 (Sep), 1105--1112.Google Scholar
Cross Ref
- Tumblin, J., Agrawal, A., and Raskar, R. 2005. Why i want a gradient camera. In CVPR, vol. 1, IEEE, 103--110. Google Scholar
Digital Library
- Ulichney, R. 1987. Digital halftoning. MIT press. Google Scholar
Digital Library
- Walker, S. J., and Jahns, J. 1990. Array generation with multilevel phase gratings. J. Opt. Soc. Am. A 7, 8 (Aug), 1509--1513.Google Scholar
Cross Ref
- Westin, S. H., Arvo, J. R., and Torrance, K. E. 1992. Predicting reflectance functions from complex surfaces. In ACM SIGGRAPH, 255--264. Google Scholar
Digital Library
- Weyrich, T., Deng, J., Barnes, C., Rusinkiewicz, S., and Finkelstein, A. 2007. Digital bas-relief from 3D scenes. ACM Transactions on Graphics (Proc. SIGGRAPH) 26, 3 (Aug.). Google Scholar
Digital Library
- Weyrich, T., Peers, P., Matusik, W., and Rusinkiewicz, S. 2009. Fabricating microgeometry for custom surface reflectance. ACM SIGGRAPH 28, 3 (Aug.), 32:1--32:6. Google Scholar
Digital Library
- Wolff, L., Nayar, S., and Oren, M. 1998. Improved Diffuse Reflection Models for Computer Vision. IJCV 30, 1 (Oct), 55--71. Google Scholar
Digital Library
- Yaroslavsky, L. 2004. Digital Holography and Digital Image Processing. Kluwer Academic Publishers.Google Scholar
- Ziegler, R., Bucheli, S., Ahrenberg, L., Magnor, M. A., and Gross, M. H. 2007. A bidirectional light field - hologram transform. Comput. Graph. Forum 26, 3, 435--446.Google Scholar
Cross Ref
Index Terms
Fabricating BRDFs at high spatial resolution using wave optics
Recommendations
Rendering specular microgeometry with wave optics
Simulation of light reflection from specular surfaces is a core problem of computer graphics. Existing solutions either make the approximation of providing only a large-area average solution in terms of a fixed BRDF (ignoring spatial detail), or are ...
Reflectance model for diffraction
We present a novel method of simulating wave effects in graphics using ray-based renderers with a new function: the Wave BSDF (Bidirectional Scattering Distribution Function). Reflections from neighboring surface patches represented by local BSDFs are ...
A reflectance display
We present a reflectance display: a dynamic digital display capable of showing images and videos with spatially-varying, user-defined reflectance functions. Our display is passive: it operates by phase-modulation of reflected light. As such, it does not ...





Comments