Abstract
We present a formulation of Willmore flow for triangulated surfaces that permits extraordinarily large time steps and naturally preserves the quality of the input mesh. The main insight is that Willmore flow becomes remarkably stable when expressed in curvature space -- we develop the precise conditions under which curvature is allowed to evolve. The practical outcome is a highly efficient algorithm that naturally preserves texture and does not require remeshing during the flow. We apply this algorithm to surface fairing, geometric modeling, and construction of constant mean curvature (CMC) surfaces. We also present a new algorithm for length-preserving flow on planar curves, which provides a valuable analogy for the surface case.
Supplemental Material
Available for Download
Supplemental material.
- Blaschke, W., and Thomsen, G. 1929. Vorlesungen über Differentialgeometrie III. Springer, Ch. Invarianten der Kreisgeometrie von Möbius, 46--91.Google Scholar
- Bobenko, A., and Schröder P 2005. Discrete Willmore Flow. In Proc. Symp. Geom. Proc., 101--110. Google Scholar
Digital Library
- Bohle, C., and Pinkall, U. 2013. Conformal Deformations of Immersed Discs in R3 and Elliptic Boundary Value Problems. ArXiv e-prints (Jan.).Google Scholar
- Botsch, M., and Kobbelt, L. 2004. A Remeshing Approach to Multiresolution Modeling. In Proc. Symp. Geom. Proc., 185--192. Google Scholar
Digital Library
- Bouaziz, S., Deuss, M., Schwartzburg, Y., Weise, T., and Pauly, M. 2012. Shape-Up: Shaping Discrete Geometry with Projections. Comp. Graph. Forum 31, 5, 1657--1667. Google Scholar
Digital Library
- Brakke, K. 1992. The Surface Evolver. Experiment Math. 1, 2, 141--165.Google Scholar
Cross Ref
- Canham, P. B. 1970. The Minimum Energy of Bending as a Possible Explanation of the Biconcave Shape of the Human Red Blood Cell. J. Th. Bio. 26, 1, 61--81.Google Scholar
Cross Ref
- Celniker, G., and Gossard, D. 1991. Deformable Curve and Surface Finite-Elements for Free-Form Shape Design. Comp. Graph. (Proc. of ACM/SIGGRAPH Conf.) 25, 4, 257--266. Google Scholar
Digital Library
- Chen, Y., Davis, T. A., Hager, W. W., and Rajamanickam, S. 2008. CHOLMOD, Supernodal Sparse Cholesky Factorization and Update/Downdate. ACM Trans. Math. Softw. 35. Google Scholar
Digital Library
- Clarenz, U., Diewald, U., Dziuk, G., Rumpf, M., and Rusu, R. 2004. A Finite Element Method for Surface Restoration with Smooth Boundary Conditions. Comput. Aided Geom. Des. 21, 5, 427--445. Google Scholar
Digital Library
- Colding, T. H., and MiNicozzi, II, W. P. 2012. Generic Mean Curvature Flow I; Generic Singularities. Ann. Math. 175, 2, 755--833.Google Scholar
Cross Ref
- Crane, K., Pinkall, U., and Schröder, P. 2011. Spin Transformations of Discrete Surfaces. ACM Trans. Graph. 30, 4, 104:1--104:10. Google Scholar
Digital Library
- Crane, K., 2012. SpinXForm. http://multires.caltech.edu/~keenan/project_spinxform.html#sourcecode.Google Scholar
- Crane, K. 2013. Conformal Geometry Processing. PhD thesis, Caltech.Google Scholar
- deGoes, F., Goldenstein, S., and Velho, L. 2008. A Simple and Flexible Framework to adapt Dynamic Meshes. Comp. & Graph. 32, 2, 141--148. Google Scholar
Digital Library
- Desbrun, M., Meyer, M., Schröder, P., and Barr A. 1999. Implicit Fairing of Irregular Meshes using Diffusion and Curvature Flow. In Proc. ACM/SIGGRAPH Conf., 317--324. Google Scholar
Digital Library
- Desbrun, M., Kanso, E., and Tong, Y 2008. Discrete Differential Forms for Computational Modeling. In Discrete Differential Geometry, A. I. Bobenko, P. Schröder, J. M. Sullivan, and G. M. Ziegler, Eds., Vol. 38 of Oberwolfach Seminars. Birkhäuser Verlag, 287--324.Google Scholar
- Eckstein, I., Pons, J.-P., Tong, Y., Kuo, C. J., and Desbrun, M. 2007. Generalized Surface Fows for Mesh Processing. In Proc. Symp. Geom. Proc., 183--192. Google Scholar
Digital Library
- Gu, X., Zeng, W., Luo, F., and Yau, S.-T. 2011. Numerical Computation of Surface Conformal Mappings. Comp. Meth. & Fun. Theory. 11, 2, 747--787.Google Scholar
Cross Ref
- Helfrich, W. 1973. Elastic Properties of Lipid Bilayers: Theory and Possible Experiments. Z. Naturf. C 28, 11, 693--703.Google Scholar
Cross Ref
- Kamberoy G., Pedit, F., and Pinkall, U. 1998. Bonnet Pairs and Isothermic Surfaces. Duke Math. J. 92, 3, 637--644.Google Scholar
Cross Ref
- Kamberoy G., Norman, P., Pedit, F., and Pinkall, U. 2002. Quaternions, Spinors and Surfaces, Vol. 299 of Contemp. Math. AMS.Google Scholar
- Kazhdan, M., Solomon, J., and Ben-Chen, M. 2012. Can Mean-Curvature Flow Be Made Non-Singular? Comp. Graph. Forum 31, 5, 1745--1754. Google Scholar
Digital Library
- Olischläger, N, and Rumpf, M. 2009. Two Step Time Discretization of Willmore Flow. In Mathematics of Surfaces XIII, Vol. 5654/2009 of Lect N. in Comp. Sc. Springer, 278--292. Google Scholar
Digital Library
- Pan, H., Choi, Y.-K., Liu, Y., Hu, W., Du, Q., Polthier K., Zhang, C., and Wang, W. 2012. Robust Modeling of Constant Mean Curvature Surfaces. ACM Trans. Graph. 31, 4. Google Scholar
Digital Library
- Pinkall, U., and Sterling, I. 1987. Willmore Surfaces. Math. Intell. 9, 2, 38--43.Google Scholar
Cross Ref
- Sander P. V., Snyder J., Gortler S. J., and Hoppe, H. 2001. Texture Mapping Progressive Meshes. In Proc. ACM/SIGGRAPH Conf., 409--416. Google Scholar
Digital Library
- Schneider R., and Kobbelt, L. 2001. Geometric Fairing of Irregular Meshes for Free-From Surface Design. Comput. Aided Geom. Des. 18, 4, 359--379. Google Scholar
Digital Library
- Taubin, G. 1995. A Signal Processing Approach to Fair Surface Design. In Proc. ACM/SIGGRAPH Conf., 351--358. Google Scholar
Digital Library
- Wardetzky, M., Bergou, M., Harmon, D., Zorin, D., and Grinspun, E. 2007. Discrete Quadratic Curvature Energies. Comput. Aided Geom. Des. 24, 8--9, 499--518. Google Scholar
Digital Library
- Welch, W., and Witkin, A. 1994. Free-Form Shape Design Using Triangulated Surfaces. Comp. Graph. (Proc. of ACM/SIGGRAPH Conf.) 28, 247--256. Google Scholar
Digital Library
- Yoshizawa, S., and Belyaev, A. G. 2002. Fair Triangle Mesh Generation with Discrete Elastica. In Geo. Mod. & Proc., 119--123. Google Scholar
Digital Library
Index Terms
Robust fairing via conformal curvature flow
Recommendations
Constrained willmore surfaces
Smooth curves and surfaces can be characterized as minimizers of squared curvature bending energies subject to constraints. In the univariate case with an isometry (length) constraint this leads to classic non-linear splines. For surfaces, isometry is ...
Spin transformations of discrete surfaces
We introduce a new method for computing conformal transformations of triangle meshes in R3. Conformal maps are desirable in digital geometry processing because they do not exhibit shear, and therefore preserve texture fidelity as well as the quality of ...
Spin transformations of discrete surfaces
SIGGRAPH '11: ACM SIGGRAPH 2011 papersWe introduce a new method for computing conformal transformations of triangle meshes in R3. Conformal maps are desirable in digital geometry processing because they do not exhibit shear, and therefore preserve texture fidelity as well as the quality of ...





Comments