skip to main content
research-article

Robust fairing via conformal curvature flow

Published:21 July 2013Publication History
Skip Abstract Section

Abstract

We present a formulation of Willmore flow for triangulated surfaces that permits extraordinarily large time steps and naturally preserves the quality of the input mesh. The main insight is that Willmore flow becomes remarkably stable when expressed in curvature space -- we develop the precise conditions under which curvature is allowed to evolve. The practical outcome is a highly efficient algorithm that naturally preserves texture and does not require remeshing during the flow. We apply this algorithm to surface fairing, geometric modeling, and construction of constant mean curvature (CMC) surfaces. We also present a new algorithm for length-preserving flow on planar curves, which provides a valuable analogy for the surface case.

Skip Supplemental Material Section

Supplemental Material

tp099.mp4

References

  1. Blaschke, W., and Thomsen, G. 1929. Vorlesungen über Differentialgeometrie III. Springer, Ch. Invarianten der Kreisgeometrie von Möbius, 46--91.Google ScholarGoogle Scholar
  2. Bobenko, A., and Schröder P 2005. Discrete Willmore Flow. In Proc. Symp. Geom. Proc., 101--110. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bohle, C., and Pinkall, U. 2013. Conformal Deformations of Immersed Discs in R3 and Elliptic Boundary Value Problems. ArXiv e-prints (Jan.).Google ScholarGoogle Scholar
  4. Botsch, M., and Kobbelt, L. 2004. A Remeshing Approach to Multiresolution Modeling. In Proc. Symp. Geom. Proc., 185--192. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bouaziz, S., Deuss, M., Schwartzburg, Y., Weise, T., and Pauly, M. 2012. Shape-Up: Shaping Discrete Geometry with Projections. Comp. Graph. Forum 31, 5, 1657--1667. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Brakke, K. 1992. The Surface Evolver. Experiment Math. 1, 2, 141--165.Google ScholarGoogle ScholarCross RefCross Ref
  7. Canham, P. B. 1970. The Minimum Energy of Bending as a Possible Explanation of the Biconcave Shape of the Human Red Blood Cell. J. Th. Bio. 26, 1, 61--81.Google ScholarGoogle ScholarCross RefCross Ref
  8. Celniker, G., and Gossard, D. 1991. Deformable Curve and Surface Finite-Elements for Free-Form Shape Design. Comp. Graph. (Proc. of ACM/SIGGRAPH Conf.) 25, 4, 257--266. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Chen, Y., Davis, T. A., Hager, W. W., and Rajamanickam, S. 2008. CHOLMOD, Supernodal Sparse Cholesky Factorization and Update/Downdate. ACM Trans. Math. Softw. 35. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Clarenz, U., Diewald, U., Dziuk, G., Rumpf, M., and Rusu, R. 2004. A Finite Element Method for Surface Restoration with Smooth Boundary Conditions. Comput. Aided Geom. Des. 21, 5, 427--445. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Colding, T. H., and MiNicozzi, II, W. P. 2012. Generic Mean Curvature Flow I; Generic Singularities. Ann. Math. 175, 2, 755--833.Google ScholarGoogle ScholarCross RefCross Ref
  12. Crane, K., Pinkall, U., and Schröder, P. 2011. Spin Transformations of Discrete Surfaces. ACM Trans. Graph. 30, 4, 104:1--104:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Crane, K., 2012. SpinXForm. http://multires.caltech.edu/~keenan/project_spinxform.html#sourcecode.Google ScholarGoogle Scholar
  14. Crane, K. 2013. Conformal Geometry Processing. PhD thesis, Caltech.Google ScholarGoogle Scholar
  15. deGoes, F., Goldenstein, S., and Velho, L. 2008. A Simple and Flexible Framework to adapt Dynamic Meshes. Comp. & Graph. 32, 2, 141--148. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Desbrun, M., Meyer, M., Schröder, P., and Barr A. 1999. Implicit Fairing of Irregular Meshes using Diffusion and Curvature Flow. In Proc. ACM/SIGGRAPH Conf., 317--324. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Desbrun, M., Kanso, E., and Tong, Y 2008. Discrete Differential Forms for Computational Modeling. In Discrete Differential Geometry, A. I. Bobenko, P. Schröder, J. M. Sullivan, and G. M. Ziegler, Eds., Vol. 38 of Oberwolfach Seminars. Birkhäuser Verlag, 287--324.Google ScholarGoogle Scholar
  18. Eckstein, I., Pons, J.-P., Tong, Y., Kuo, C. J., and Desbrun, M. 2007. Generalized Surface Fows for Mesh Processing. In Proc. Symp. Geom. Proc., 183--192. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Gu, X., Zeng, W., Luo, F., and Yau, S.-T. 2011. Numerical Computation of Surface Conformal Mappings. Comp. Meth. & Fun. Theory. 11, 2, 747--787.Google ScholarGoogle ScholarCross RefCross Ref
  20. Helfrich, W. 1973. Elastic Properties of Lipid Bilayers: Theory and Possible Experiments. Z. Naturf. C 28, 11, 693--703.Google ScholarGoogle ScholarCross RefCross Ref
  21. Kamberoy G., Pedit, F., and Pinkall, U. 1998. Bonnet Pairs and Isothermic Surfaces. Duke Math. J. 92, 3, 637--644.Google ScholarGoogle ScholarCross RefCross Ref
  22. Kamberoy G., Norman, P., Pedit, F., and Pinkall, U. 2002. Quaternions, Spinors and Surfaces, Vol. 299 of Contemp. Math. AMS.Google ScholarGoogle Scholar
  23. Kazhdan, M., Solomon, J., and Ben-Chen, M. 2012. Can Mean-Curvature Flow Be Made Non-Singular? Comp. Graph. Forum 31, 5, 1745--1754. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Olischläger, N, and Rumpf, M. 2009. Two Step Time Discretization of Willmore Flow. In Mathematics of Surfaces XIII, Vol. 5654/2009 of Lect N. in Comp. Sc. Springer, 278--292. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Pan, H., Choi, Y.-K., Liu, Y., Hu, W., Du, Q., Polthier K., Zhang, C., and Wang, W. 2012. Robust Modeling of Constant Mean Curvature Surfaces. ACM Trans. Graph. 31, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Pinkall, U., and Sterling, I. 1987. Willmore Surfaces. Math. Intell. 9, 2, 38--43.Google ScholarGoogle ScholarCross RefCross Ref
  27. Sander P. V., Snyder J., Gortler S. J., and Hoppe, H. 2001. Texture Mapping Progressive Meshes. In Proc. ACM/SIGGRAPH Conf., 409--416. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Schneider R., and Kobbelt, L. 2001. Geometric Fairing of Irregular Meshes for Free-From Surface Design. Comput. Aided Geom. Des. 18, 4, 359--379. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Taubin, G. 1995. A Signal Processing Approach to Fair Surface Design. In Proc. ACM/SIGGRAPH Conf., 351--358. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Wardetzky, M., Bergou, M., Harmon, D., Zorin, D., and Grinspun, E. 2007. Discrete Quadratic Curvature Energies. Comput. Aided Geom. Des. 24, 8--9, 499--518. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Welch, W., and Witkin, A. 1994. Free-Form Shape Design Using Triangulated Surfaces. Comp. Graph. (Proc. of ACM/SIGGRAPH Conf.) 28, 247--256. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Yoshizawa, S., and Belyaev, A. G. 2002. Fair Triangle Mesh Generation with Discrete Elastica. In Geo. Mod. & Proc., 119--123. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Robust fairing via conformal curvature flow

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 32, Issue 4
        July 2013
        1215 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2461912
        Issue’s Table of Contents

        Copyright © 2013 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 21 July 2013
        Published in tog Volume 32, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader