skip to main content
research-article

Probabilistic color-by-numbers: suggesting pattern colorizations using factor graphs

Published:21 July 2013Publication History
Skip Abstract Section

Abstract

We present a probabilistic factor graph model for automatically coloring 2D patterns. The model is trained on example patterns to statistically capture their stylistic properties. It incorporates terms for enforcing both color compatibility and spatial arrangements of colors that are consistent with the training examples. Using Markov Chain Monte Carlo, the model can be sampled to generate a diverse set of new colorings for a target pattern. This general probabilistic framework allows users to guide the generated suggestions via conditional inference or additional soft constraints. We demonstrate results on a variety of coloring tasks, and we evaluate the model through a perceptual study in which participants judged sampled colorings to be significantly preferable to other automatic baselines.

Skip Supplemental Material Section

Supplemental Material

tp106.mp4

References

  1. Albers, J. 1963. The interaction of color. Art news 62, 1.Google ScholarGoogle Scholar
  2. Bribiesca, E. 1997. Measuring 2-d shape compactness using the contact perimeter. Computers & Mathematics with Applications 33, 11.Google ScholarGoogle ScholarCross RefCross Ref
  3. Carbonell, J., and Goldstein, J. 1998. The use of mmr, diversity-based reranking for reordering documents and producing summaries. In Proc. ACM SIGIR 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Charpiat, G., Hofmann, M., and Schölkopf, B. 2008. Automatic image colorization via multimodal predictions. In Proc. ECCV 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Cohen-Or, D., Sorkine, O., Gal, R., Leyvand, T., and Xu, Y.-Q. 2006. Color harmonization. In Proc. SIGGRAPH 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Datta, R., Joshi, D., Li, J., and Wang, J. Z. 2006. Studying aesthetics in photographic images using a computational approach. In Proc. ECCV 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Eitz, M., Hays, J., and Alexa, M. 2012. How do humans sketch objects? In Proc. SIGGRAPH 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Geyer, C. 1991. Markov chain monte carlo maximum likelihood. In Proc. of the 23rd Symposium on the Inteface: Computing Science and Statistics, 156--163.Google ScholarGoogle Scholar
  9. Hastings, W. K. 1970. Monte carlo sampling methods using markov chains and their applications. Biometrika 57, 1.Google ScholarGoogle ScholarCross RefCross Ref
  10. Heer, J., and Stone, M. 2012. Color naming models for color selection, image editing and palette design. In Proc. ACM CHI 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Hinton, G. E. 2002. Training products of experts by minimizing contrastive divergence. Neural Computation. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Itten, J. 1974. The Art of Color: The Subjective Experience and Objective Rationale of Color. Wiley.Google ScholarGoogle Scholar
  13. Jain, A., Thormählen, T., Ritschel, T., and Seidel, H.-P. 2012. Material memex: automatic material suggestions for 3d objects. In Proc. SIGGRAPH Asia 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Levin, A., Lischinski, D., and Weiss, Y. 2004. Colorization using optimization. In Proc. SIGGRAPH 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Lin, S., and Hanrahan, P. 2013. Modeling how people extract color themes from images. In Proc. of CHI 2013, ACM, New York, NY, USA, CHI '13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Lübbe, E. 2010. Colours in the Mind - Colour Systems in Reality. Books on Demand.Google ScholarGoogle Scholar
  17. Mccallum, A., Schultz, K., and Singh, S. 2009. Factorie: Probabilistic programming via imperatively defined factor graphs. In Proc. NIPS 2009.Google ScholarGoogle Scholar
  18. Meier, B., Spalter, A., and Karelitz, D. 2004. Interactive color palette tools. Computer Graphics and Applications 24, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Merrell, P., Schkufza, E., Li, Z., Agrawala, M., and Koltun, V. 2011. Interactive furniture layout using interior design guidelines. In Proc. SIGGRAPH 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. 1953. Equation of State Calculations by Fast Computing Machines. The Journal of Chemical Physics 21, 6.Google ScholarGoogle ScholarCross RefCross Ref
  21. Munsell, A., and Birren, F. 1969. A Grammar of Color: A Basic Treatise on the Color System of Albert H. Munsell. Van Nostrand Reinhold.Google ScholarGoogle Scholar
  22. Neal, R. M. 2010. Mcmc using hamiltonian dynamics. In Handbook of Markov Chain Monte-Carlo (Steve Brooks, Andrew Gelman, Gailin Jones and Xiao-Li Meng, Eds.Google ScholarGoogle Scholar
  23. Nguyen, C. H., Ritschel, T., Myszkowski, K., Eisemann, E., and Seidel, H.-P. 2012. 3d material style transfer. Computer Graphics Forum. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. O'Donovan, P., Agarwala, A., and Hertzmann, A. 2011. Color Compatibility From Large Datasets. ACM Transactions on Graphics 30, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Palmer, S. E., and Schloss, K. B. 2010. An ecological valence theory of human color preference. Proceedings of the National Academy of Sciences 107, 19, 8877--8882.Google ScholarGoogle Scholar
  26. Robert, C. P. 1995. Simulation of truncated normal variables. Statistics and Computing 5.Google ScholarGoogle Scholar
  27. Sauvaget, C., Manuel, S., Vittaut, J.-N., Suarez, J., and Boyer, V. 2010. Segmented images colorization using harmony. In Proc. of Signal-Image Technology and Internet-Based Systems (SITIS) 2010, vol. 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Sharma, G., Wu, W., and Dalal, E. N. 2005. The CIEDE2000 color-difference formula: implementation notes, supplementary test data, and mathematical observations. Color research and application 30, 1.Google ScholarGoogle Scholar
  29. Sutton, T., and Whelan, B. 2004. The Complete Color Harmony: Expert Color Information for Professional Color Results. Color Harmony Series. Quayside Publishing Group.Google ScholarGoogle Scholar
  30. Wang, B., Yu, Y., Wong, T.-T., Chen, C., and Xu, Y.-Q. 2010. Data-driven image color theme enhancement. In Proc. SIGGRAPH Asia 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Welsh, T., Ashikhmin, M., and Mueller, K. 2002. Transferring color to greyscale images. In Proc. SIGGRAPH 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Yeh, Y.-T., Breeden, K., Yang, L., Fisher, M., and Hanrahan, P. 2012. Synthesis of tiled patterns using factor graphs. ACM Transactions on Graphics. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Yeh, Y.-T., Yang, L., Watson, M., Goodman, N. D., and Hanrahan, P. 2012. Synthesizing open worlds with constraints using locally annealed reversible jump mcmc. In Proc. SIGGRAPH 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Yu, L.-F., Yeung, S.-K., Terzopoulos, D., and Chan, T. F. 2012. Dressup!: outfit synthesis through automatic optimization. In Proc. SIGGRAPH Asia 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in

Full Access

  • Published in

    cover image ACM Transactions on Graphics
    ACM Transactions on Graphics  Volume 32, Issue 4
    July 2013
    1215 pages
    ISSN:0730-0301
    EISSN:1557-7368
    DOI:10.1145/2461912
    Issue’s Table of Contents

    Copyright © 2013 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 21 July 2013
    Published in tog Volume 32, Issue 4

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • research-article

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader