skip to main content
research-article

Dynamic hair manipulation in images and videos

Published:21 July 2013Publication History
Skip Abstract Section

Abstract

This paper presents a single-view hair modeling technique for generating visually and physically plausible 3D hair models with modest user interaction. By solving an unambiguous 3D vector field explicitly from the image and adopting an iterative hair generation algorithm, we can create hair models that not only visually match the original input very well but also possess physical plausibility (e.g., having strand roots fixed on the scalp and preserving the length and continuity of real strands in the image as much as possible). The latter property enables us to manipulate hair in many new ways that were previously very difficult with a single image, such as dynamic simulation or interactive hair shape editing. We further extend the modeling approach to handle simple video input, and generate dynamic 3D hair models. This allows users to manipulate hair in a video or transfer styles from images to videos.

Skip Supplemental Material Section

Supplemental Material

tp115.mp4

References

  1. Barnes, C., Shechtman, E., Finkelstein, A., and Goldman, D. B. 2009. PatchMatch: A randomized correspondence algorithm for structural image editing. ACM Trans. Graph. 28, 3, 24:1--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Beeler, T., Bickel, B., Noris, G., Beardsley, P., Marschner, S., Sumner, R. W., and Gross, M. 2012. Coupled 3D reconstruction of sparse facial hair and skin. ACM Trans. Graph. 31, 4, 117:1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bitouk, D., Kumar, N., Dhillon, S., Belhumeur, P. N., and Nayar, S. K. 2008. Face Swapping: Automatically replacing faces in photographs. ACM Trans. Graph. 27, 39:1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Blanz, V., and Vetter, T. 1999. A morphable model for the synthesis of 3D faces. In Proc. SIGGRAPH '99, 187--194. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bonneel, N., Paris, S., Panne, M. V. D., Durand, F., and Drettakis, G. 2009. Single photo estimation of hair appearance. Computer Graphics Forum 28, 1171--1180. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Chai, M., Wang, L., Yu, Y., Weng, Y., Guo, B., and Zhou, K. 2012. Single-view hair modeling for portrait manipulation. ACM Trans. Graph. 31, 4, 116:1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Dale, K., Sunkavalli, K., Johnson, M. K., Vlasic, D., Matusik, W., and Pfister, H. 2011. Video face replacement. ACM Trans. Graph. 30, 6, 130:1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Daviet, G., Bertails-Descoubes, F., and Boissieux, L. 2011. A hybrid iterative solver for robustly capturing Coulomb friction in hair dynamics. ACM Trans. Graph. 30, 6, 139:1--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Fu, H., Wei, Y., Tai, C.-L., and Quan, L. 2007. Sketching hairstyles. In Proc. EUROGRAPHICS Workshop on Sketch-Based Interfaces and Modeling, 31--36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Herrera, T. L., Zinke, A., and Weber, A. 2012. Lighting hair from the inside: A thermal approach to hair reconstruction. ACM Trans. Graph. 31, 6, 146:1--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Hoiem, D., Efros, A. A., and Hebert, M. 2005. Automatic photo pop-up. ACM Trans. Graph. 24, 3, 577--584. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Jain, A., Thormählen, T., Seidel, H.-P., and Theobalt, C. 2010. MovieReshape: Tracking and reshaping of humans in videos. ACM Trans. Graph. 29, 6, 148:1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Jakob, W., Moon, J. T., and Marschner, S. 2009. Capturing hair assemblies fiber by fiber. ACM Trans. Graph. 28, 5, 164:1--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Karp, R. M. 1972. Reducibility among combinatorial problems. Complexity of Computer Computations, 85--103.Google ScholarGoogle Scholar
  15. Karsch, K., Hedau, V., Forsyth, D., and Hoiem, D. 2011. Rendering synthetic oobject into legacy photographs. ACM Trans. Graph. 30, 6, 157:1--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Lang, M., Wang, O., Aydin, T., Smolic, A., and Gross, M. 2012. Practical temporal consistency for image-based graphics applications. ACM Trans. Graph. 31, 4, 34:1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Liu, J., Sun, J., and Shum, H.-Y. 2009. Paint selection. ACM Trans. Graph. 28, 3, 69:1--7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Luo, L., Li, H., Paris, S., Weise, T., Pauly, M., and Rusinkiewicz, S. 2012. Multi-view hair capture using orientation fields. In Proc. CVPR 2012, 1490--1497. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Marschner, S., Jensen, H. W., Cammarano, M., Worley, S., and Hanrahan, P. 2003. Light scattering from human hair fibers. ACM Trans. Graph. 22, 3, 780--791. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Oh, B. M., Chen, M., Dorsey, J., and Durand, F. 2001. Image-based modeling and photo editing. In Proc. SIGGRAPH '01, 433--442. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Paris, S., Briceño, H., and Sillion, F. 2004. Capture of hair geometry from multiple images. ACM Trans. Graph. 23, 3, 712--719. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Paris, S., Chang, W., Kozhushnyan, O. I., Jarosz, W., Matusik, W., Zwicker, M., and Durand, F. 2008. Hair photobooth: geometric and photometric acquisition of real hairstyles. ACM Trans. Graph. 27, 3, 30:1--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Perlin, K. 2002. Improving noise. In Proc. SIGGRAPH '02, 681--682. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Piuze, E., Kry, P. G., and Siddiqi, K. 2011. Generalized helicoids for modeling hair geometry. Computer Graphics Forum 30, 2, 247--256.Google ScholarGoogle ScholarCross RefCross Ref
  25. Selle, A., Lentine, M., and Fedkiw, R. 2008. A mass spring model for hair simulation. ACM Trans. Graph. 27, 3, 64:1--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Tan, P., Fang, T., Xiao, J., Zhao, P., and Quan, L. 2008. Single image tree modeling. ACM Trans. Graph. 27, 5, 108:1--7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Vlasic, D., Brand, M., Pfister, H., and Popovic, J. 2005. Face transfer with multilinear models. ACM Trans. Graph. 24, 3, 426--433. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Wang, L., Yu, Y., Zhou, K., and Guo, B. 2009. Example-based hair geometry synthesis. ACM Trans. Graph. 28, 3, 56:1--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Ward, K., Bertails, F., Kim, T.-Y., Marschner, S. R., Cani, M.-P., and Lin, M. C. 2007. A survey on hair modeling: styling, simulation, and rendering. IEEE Transactions on Visualization and Computer Graphics 13, 2, 213--234. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Wei, Y., Ofek, E., Quan, L., and Shum, H.-Y. 2005. Modeling hair from multiple views. ACM Trans. Graph. 24, 3, 816--820. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Yamaguchi, T., Wilburn, B., and Ofek, E. 2009. Video-based modeling of dynamic hair. In the 3rd Pacific Rim Symposium on Advances in Image and Video Technology, 585--596. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Yang, F., Wang, J., Shechtman, E., Bourdev, L., and Metaxas, D. 2011. Expression flow for 3D-aware face component transfer. ACM Trans. Graph. 30, 4, 60:1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Yuksel, C., Schaefer, S., and Keyser, J. 2009. Hair meshes. ACM Trans. Graph. 28, 5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Zhang, Q., Tong, J., Wang, H., Pan, Z., and Yang, R. 2012. Simulation guided hair dynamics modeling from video. Computer Graphics Forum 31, 7, 2003--2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Zheng, Y., Chen, X., Cheng, M.-M., Zhou, K., Hu, S.-M., and Mitra, N. J. 2012. Interactive images: Cuboid proxies for smart image manipulation. ACM Trans. Graph. 31, 4, 99:1--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Zhou, S., Fu, H., Liu, L., Cohen-Or, D., and Han, X. 2010. Parametric reshaping of human bodies in images. ACM Trans. Graph. 29, 4, 126:1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Dynamic hair manipulation in images and videos

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Transactions on Graphics
            ACM Transactions on Graphics  Volume 32, Issue 4
            July 2013
            1215 pages
            ISSN:0730-0301
            EISSN:1557-7368
            DOI:10.1145/2461912
            Issue’s Table of Contents

            Copyright © 2013 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 21 July 2013
            Published in tog Volume 32, Issue 4

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader