skip to main content
research-article

Liquid surface tracking with error compensation

Published:21 July 2013Publication History
Skip Abstract Section

Abstract

Our work concerns the combination of an Eulerian liquid simulation with a high-resolution surface tracker (e.g. the level set method or a Lagrangian triangle mesh). The naive application of a high-resolution surface tracker to a low-resolution velocity field can produce many visually disturbing physical and topological artifacts that limit their use in practice. We address these problems by defining an error function which compares the current state of the surface tracker to the set of physically valid surface states. By reducing this error with a gradient descent technique, we introduce a novel physics-based surface fairing method. Similarly, by treating this error function as a potential energy, we derive a new surface correction force that mimics the vortex sheet equations. We demonstrate our results with both level set and mesh-based surface trackers.

Skip Supplemental Material Section

Supplemental Material

tp116.mp4

References

  1. Bargteil, A. W., Goktekin, T. G., O'brien, J. F., and Strain, J. A. 2006. A semi-lagrangian contouring method for fluid simulation. ACM Transactions on Graphics (TOG) 25, 1, 19--38. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Bojsen-Hansen, M. 2011. A Hybrid Mesh-Grid Approach for Efficient Large Body Water Simulation. Master's thesis, Aarhus University.Google ScholarGoogle Scholar
  3. Bridson, R. 2008. Fluid Simulation for Computer Graphics. AK Peters. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Brochu, T., and Bridson, R. 2009. Robust topological operations for dynamic explicit surfaces. SIAM Journal on Scientific Computing 31, 4, 2472--2493. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Brochu, T., Batty, C., and Bridson, R. 2010. Matching fluid simulation elements to surface geometry and topology. ACM Transactions on Graphics (SIGGRAPH) 29, 4, 47:1--47:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Brochu, T., Keeler, T., and Bridson, R. 2012. Linear-time smoke animation with vortex sheet meshes. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA), 87--95. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Enright, D., Marschner, S., and Fedkiw, R. 2002. Animation and rendering of complex water surfaces. ACM Transactions on Graphics (SIGGRAPH) 21, 3, 736--744. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Enright, D., Nguyen, D., Gibou, F., and Fedkiw, R. 2003. Using the particle level set method and a second order accurate pressure boundary condition for free surface flows. In Proceedings of FEDSM, vol. 3, 4th.Google ScholarGoogle Scholar
  9. Goktekin, T., Bargteil, A., and O'Brien, J. 2004. A method for animating viscoelastic fluids. ACM Transactions on Graphics (SIGGRAPH) 23, 3, 463--468. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Heo, N., and Ko, H.-S. 2010. Detail-preserving fully-eulerian interface tracking framework. ACM Transactions on Graphics (SIGGRAPH Asia) 29, 6, 176:1--176:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Hirt, C., and Nichols, B. 1981. Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of computational physics 39, 1, 201--225.Google ScholarGoogle ScholarCross RefCross Ref
  12. Hong, J.-M., and Kim, C.-H. 2005. Discontinuous fluids. ACM Transactions on Graphics (SIGGRAPH) 24, 3, 915--920. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Kim, B., Liu, Y., Llamas, I., Jiao, X., and Rossignac, J. 2007. Simulation of bubbles in foam with the volume control method. ACM Transactions on Graphics (SIGGRAPH) 26, 3, 98:1--98:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Kim, D., Song, O.-y., and Ko, H.-S. 2009. Stretching and wiggling liquids. ACM Transactions on Graphics (SIGGRAPH Asia) 28, 5, 120:1--120:7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Kim, D., Lee, S. W., young Song, O., and Ko, H.-S. 2012. Baroclinic turbulence with varying density and temperature. IEEE Transactions on Visualization and Computer Graphics 18, 1488--1495. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Lentine, M., Zheng, W., and Fedkiw, R. 2010. A novel algorithm for incompressible flow using only a coarse grid projection. ACM Transactions on Graphics (SIGGRAPH) 29, 4, 114:1--114:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Losasso, F., Gibou, F., and Fedkiw, R. 2004. Simulating water and smoke with an octree data structure. ACM Transactions on Graphics (SIGGRAPH) 23, 3, 457--462. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. McAdams, A., Sifakis, E., and Teran, J. 2010. A parallel multigrid poisson solver for fluids simulation on large grids. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA), 65--74. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Museth, K. 2013. VDB: High-resolution sparse volumes with dynamic topology. ACM Transactions on Graphics (to appear) 32, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Osher, S., and Fedkiw, R. 2003. Level set methods and dynamic implicit surfaces, vol. 153. Springer.Google ScholarGoogle Scholar
  21. Park, S. I., and Kim, M. J. 2005. Vortex fluid for gaseous phenomena. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA), 261--270. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Pfaff, T., Thuerey, N., Selle, A., and Gross, M. 2009. Synthetic turbulence using artificial boundary layers. ACM Transactions on Graphics (SIGGRAPH Asia) 28, 5, 121:1--121:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Pfaff, T., Thuerey, N., and Gross, M. 2012. Lagrangian vortex sheets for animating fluids. ACM Transactions on Graphics (SIGGRAPH) 31, 4, 112:1--112:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Pozrikidis, C. 2000. Theoretical and computational aspects of the self-induced motion of three-dimensional vortex sheets. Journal of Fluid Mechanics 425, 335--366.Google ScholarGoogle ScholarCross RefCross Ref
  25. Selle, A., Rasmussen, N., and Fedkiw, R. 2005. A vortex particle method for smoke, water and explosions. ACM Transactions on Graphics (SIGGRAPH) 24, 3, 910--914. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Stock, M., Dahm, W., and Tryggvason, G. 2008. Impact of a vortex ring on a density interface using a regularized inviscid vortex sheet method. Journal of Computational Physics 227, 21, 9021--9043. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Thürey, N., Wojtan, C., Gross, M., and Turk, G. 2010. A multiscale approach to mesh-based surface tension flows. ACM Transactions on Graphics (SIGGRAPH) 29, 4, 48:1--48:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Williams, B. 2008. Fluid surface reconstruction from particles. Master's thesis, The University Of British Columbia.Google ScholarGoogle Scholar
  29. Wojtan, C., and Turk, G. 2008. Fast viscoelastic behavior with thin features. ACM Transactions on Graphics (SIGGRAPH) 27, 3, 47:1--47:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Wojtan, C., Thürey, N., Gross, M., and Turk, G. 2009. Deforming meshes that split and merge. ACM Transactions on Graphics (SIGGRAPH) 28, 3, 76:1--76:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Wojtan, C., Thürey, N., Gross, M., and Turk, G. 2010. Physics-inspired topology changes for thin fluid features. ACM Transactions on Graphics (SIGGRAPH) 29, 4, 50:1--50:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Wojtan, C., Müller-Fischer, M., and Brochu, T. 2011. Liquid simulation with mesh-based surface tracking. In ACM SIGGRAPH 2011 Courses. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Yu, J., and Turk, G. 2010. Reconstructing surfaces of particle-based fluids using anisotropic kernels. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA), 217--225. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Yu, J., Wojtan, C., Turk, G., and Yap, C. 2012. Explicit mesh surfaces for particle based fluids. Computer Graphics Forum (Eurographics) 31, 2, 815--824. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Liquid surface tracking with error compensation

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 32, Issue 4
          July 2013
          1215 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/2461912
          Issue’s Table of Contents

          Copyright © 2013 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 21 July 2013
          Published in tog Volume 32, Issue 4

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader