skip to main content
research-article

Efficient preconditioning of laplacian matrices for computer graphics

Published:21 July 2013Publication History
Skip Abstract Section

Abstract

We present a new multi-level preconditioning scheme for discrete Poisson equations that arise in various computer graphics applications such as colorization, edge-preserving decomposition for two-dimensional images, and geodesic distances and diffusion on three-dimensional meshes. Our approach interleaves the selection of fine-and coarse-level variables with the removal of weak connections between potential fine-level variables (sparsification) and the compensation for these changes by strengthening nearby connections. By applying these operations before each elimination step and repeating the procedure recursively on the resulting smaller systems, we obtain a highly efficient multi-level preconditioning scheme with linear time and memory requirements. Our experiments demonstrate that our new scheme outperforms or is comparable with other state-of-the-art methods, both in terms of operation count and wall-clock time. This speedup is achieved by the new method's ability to reduce the condition number of irregular Laplacian matrices as well as homogeneous systems. It can therefore be used for a wide variety of computational photography problems, as well as several 3D mesh processing tasks, without the need to carefully match the algorithm to the problem characteristics.

Skip Supplemental Material Section

Supplemental Material

tp051.mp4

References

  1. Aksoylu, B., Khodakovsky, A., and Schröder, P. 2005. Multilevel solvers for unstructured surface meshes. SIAM Journal on Scientific Computing 26, 4, 1146--1165. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Alcouffe, R., Brandt, A., Dendy, Jr, J., and Painter, J. 1981. The multi-grid method for the diffusion equation with strongly discontinuous coefficients. SIAM Journal on Scientific and Statistical Computing 2, 4, 430--454.Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Arbenz, P., Hetmanuik, U., Lehoucq, R., and Tuminaro, R. 2003. A comparison of eigensolvers for large-scale 3D modal analysis using amg-preconditioned iterative methods. Int. Journal for Numerical Methods in Engg. 1.Google ScholarGoogle Scholar
  4. Baker, S., Scharstein, D., Lewis, J. P., Roth, S., Black, M. J., and Szeliski, R. 2011. A database and evaluation methodology for optical flow. Int. J. Comput. Vision 92 (March), 1--31. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bhat, P., Zitnick, C. L., Cohen, M., and Curless, B. 2010. Gradientshop: A gradient-domain optimization framework for image and video filtering. ACM Trans. Graph. 29 (April), 10:1--10:14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Bolz, J., Farmer, I., Grinspun, E., and Schröoder, P. 2003. Sparse matrix solvers on the GPU: conjugate gradients and multigrid. In ACM SIGGRAPH 2003 Papers, ACM, New York, NY, USA, SIGGRAPH '03, 917--924. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Boman, E., G., and Hendrickson, B. 2001. On spanning tree preconditioners. Sandia National Labs.Google ScholarGoogle Scholar
  8. Boman, E., G., and Hendrickson, B. 2003. Support theory for preconditioning. SIAM J. Matrix Anal. Appl., 3, 694--717. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Bouwmeester, H., Dougherty, A., and Knyazev, A. V. 2012. Nonsymmetric multigrid preconditioning for conjugate gradient methods. arXiv preprint arXiv:1212.6680.Google ScholarGoogle Scholar
  10. Brandt, A., Brannick, J. J., Kahl, K., and Livshits, I. 2011. Bootstrap AMG. SIAM J. Scientific Computing 33, 2, 612--632. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Brandt, A. 1973. Multi-level adaptive technique (MLAT) for fast numerical solution to boundary value problems. In Proc. Conf. on Numerical Methods in Fluid Mechanics, vol. 18 of Lecture Notes in Physics. Springer Berlin/Heidelberg, 82--89.Google ScholarGoogle ScholarCross RefCross Ref
  12. Brandt, A. 1986. Algebraic multigrid theory: The symmetric case. Applied Mathematics and Computation 19, 1-4, 23--56. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Brandt, A. 2001. Multiscale scientific computation: Review 2001. In Multiscale and Multiresolution Methods, Springer Verlag, 1--96.Google ScholarGoogle Scholar
  14. Crane, K., Weischedel, C., and Wardetzky, M. 2012. Geodesics in heat. ACM Transactions on Graphics (Proc. SIGGRAPH) 31, 4 (July).Google ScholarGoogle Scholar
  15. Davis, T. A. 2006. Direct Methods for Sparse Linear Systems. SIAM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Farbman, Z., Fattal, R., Lischinski, D., and Szeliski, R. 2008. Edge-preserving decompositions for multi-scale tone and detail manipulation. ACM Transactions on Graphics (Proc. SIGGRAPH) 27, 3 (August). Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Farbman, Z., Fattal, R., and Lischinski, D. 2011. Convolution pyramids. ACM Trans. Graph. 30 (December), 175:1--175:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Fattal, R., Lischinski, D., and Werman, M. 2002. Gradient domain high dynamic range compression. ACM Transactions on Graphics, 249--256. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Fattal, R. 2009. Edge-avoiding wavelets and their applications. In ACM SIGGRAPH papers, ACM, New York, NY, USA, 22:1--22:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Fleishman, S., Drori, I., and Cohen-Or, D. 2003. Bilateral mesh denoising. ACM Transactions on Graphics (Proc. SIGGRAPH) 22, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Golub, G., and Van Loan, C. F. 1996. Matrix computation, third edition. The John Hopkins University Press, Baltimore and London. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Kazhdan, M., and Hoppe, H. 2008. Streaming multigrid for gradient-domain operations on large images. ACM Trans. Graph. 27, 3, 21:1--21:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Kelner, J. A., Orecchia, L., Sidford, A., and Zhu, Z. A. 2013. A simple, combinatorial algorithm for solving SDD systems in nearly-linear time. arXiv preprint arXiv:1301.6628.Google ScholarGoogle Scholar
  24. Kincaid, D., and Cheney, W. 1991. Numerical analysis: mathematics of scientific computing. Brooks/Cole Publishing Co., Pacific Grove, CA, USA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Koutis, I., Miller, G. L., and Peng, R. 2010. Approaching optimality for solving SDD linear systems. Proceedings of FOCS 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Koutis, I., Miller, G. L., and Tolliver, D. 2011. Combinatorial preconditioners and multilevel solvers for problems in computer vision and image processing. Computer Vision and Image Understanding, 1638--1646. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Koutis, I., Miller, G. L., and Peng, R. 2011. A nearly-m log n time solver for SDD linear systems. In Foundations of Computer Science (FOCS), 2011 IEEE 52nd Annual Symposium on, IEEE, 590--598. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Krishnan, D., and Szeliski, R. 2011. Multigrid and multilevel preconditioners for computational photography. ACM Transactions on Graphics (Proc. SIGGRAPH Asia), 5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Kushnir, D., Galun, M., and Brandt, A. 2010. Efficient multilevel eigensolvers with applications to data analysis tasks. Pattern Analysis and Machine Intelligence, IEEE Transactions on 32, 8, 1377--1391. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Levin, A., Lischinski, D., and Weiss, Y. 2004. Colorization using optimization. ACM Transactions on Graphics, 689--694. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Levin, A., Rav-Acha, A., and Lischinski, D. 2007. Spectral matting. Proceedings of CVPR.Google ScholarGoogle Scholar
  32. Lipton, R. J., Rose, D. J., and Tarjan, R. E. 1979. Generalized nested dissection. SIAM J. Numer. Anal. 16, 346--358.Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Lischinski, D., Farbman, Z., Uyttendaele, M., and Szeliski, R. 2006. Interactive local adjustment of tonal values. In ACM SIGGRAPH Papers, ACM, New York, NY, USA, 646--653. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Liu, R., and Zhang, H. 2007. Mesh segmentation via spectral embedding and contour analysis. Eurographics 26, 3.Google ScholarGoogle ScholarCross RefCross Ref
  35. Livne, O., and Brandt, A. 2011. Lean algebraic multigrid (LAMG): Fast graph laplacian solver. arXiv:1108.0123v1.Google ScholarGoogle Scholar
  36. Moulton, J. D., Dendy, Jr., J. E., and Hyman, J. M. 1998. The black box multigrid numerical homogenization algorithm. J. Comput. Phys. 142 (May), 80--108. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Pérez, P., Gangnet, M., and Blake, A. 2003. Poisson image editing. ACM Transactions on Graphics (Proc. SIGGRAPH) 22, 3, 313--318. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Saad, Y. 2003. Iterative Methods for Sparse Linear Systems, second ed. Society for Industrial and Applied Mathematics. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Shi, L., Yu, Y., Bell, N., and Feng, W.-W. 2006. A fast multi-grid algorithm for mesh deformation. In ACM SIGGRAPH 2006 Papers, ACM, New York, NY, USA, SIGGRAPH '06, 1108--1117. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Spielman, D. A., and Teng, S.-H. 2006. Nearly-linear time algorithms for preconditioning and solving symmetric, diagonally dominant linear systems. CoRR abs/cs/0607105.Google ScholarGoogle Scholar
  41. Spielman, D., A. 2010. Algorithms, graph theory and linear equations in Laplacian matrices. Proceedings of the International Congress of Mathematicians (ICM).Google ScholarGoogle Scholar
  42. Sun, J., Jia, J., Tang, C.-K., and Shum, H.-Y. 2004. Poisson matting. In ACM SIGGRAPH Papers, ACM, New York, NY, USA, 315--321. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Szeliski, R. 1990. Fast surface interpolation using hierarchical basis functions. Pattern Analysis and Machine Intelligence, IEEE Transactions on 12, 6 (jun), 513--528. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Szeliski, R. 2006. Locally adapted hierarchical preconditioning. Proceedings of ACM SIGGRAPH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Trottenberg, U., Oosterlee, C., and Schuller, A. 2001. Multigrid. Academic Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Vaidya, P. 1990. Solving linear equations with symmetric diagonally dominant matrices by constructing good preconditioners. Tech. rep., Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL.Google ScholarGoogle Scholar
  47. Vaněk, P., Mandel, J., and Brezina, M. 1996. Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems. Computing 56, 3, 179--196.Google ScholarGoogle ScholarCross RefCross Ref
  48. Vaněk, P. 1995. Fast multigrid solver. Applications of Mathematics 40, 1, 1--20.Google ScholarGoogle ScholarCross RefCross Ref
  49. Xu, K., Li, Y., Ju, T., Hu, S.-M., and Liu, T.-Q. 2009. Efficient affinity-based edit propagation using K-D tree. In ACM SIGGRAPH Asia papers, ACM, New York, NY, USA, 118:1--118:6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Yserentant, H. 1986. On the multi-level splitting of finite element spaces. Numerische Mathematik 49, 379--412. 10.1007/BF01389538. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Zeeuw, P. D. 1990. Matrix-dependent prolongations and restrictions in a blackbox multigrid solver. Journal of Computational and Applied Mathematics 33, 1, 1--27. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Zhu, Y., Sifakis, E., Teran, J., and Brandt, A. 2010. An efficient multigrid method for the simulation of high-resolution elastic solids. ACM Trans. Graph. 29 (April), 16:1--16:18. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Efficient preconditioning of laplacian matrices for computer graphics

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 32, Issue 4
          July 2013
          1215 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/2461912
          Issue’s Table of Contents

          Copyright © 2013 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 21 July 2013
          Published in tog Volume 32, Issue 4

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader