skip to main content
research-article

Spec2Fab: a reducer-tuner model for translating specifications to 3D prints

Published:21 July 2013Publication History
Skip Abstract Section

Abstract

Multi-material 3D printing allows objects to be composed of complex, heterogenous arrangements of materials. It is often more natural to define a functional goal than to define the material composition of an object. Translating these functional requirements to fabri-cable 3D prints is still an open research problem. Recently, several specific instances of this problem have been explored (e.g., appearance or elastic deformation), but they exist as isolated, monolithic algorithms. In this paper, we propose an abstraction mechanism that simplifies the design, development, implementation, and reuse of these algorithms. Our solution relies on two new data structures: a reducer tree that efficiently parameterizes the space of material assignments and a tuner network that describes the optimization process used to compute material arrangement. We provide an application programming interface for specifying the desired object and for defining parameters for the reducer tree and tuner network. We illustrate the utility of our framework by implementing several fabrication algorithms as well as demonstrating the manufactured results.

Skip Supplemental Material Section

Supplemental Material

tp074.mp4

References

  1. Alexa, M., and Matusik, W. 2010. Reliefs as images. ACM Trans. on Graphics (SIGGRAPH 2010) 29, 4 (July), 60:1--60:7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Baran, I., Keller, P., Bradley, D., Coros, S., Jarosz, W., Nowrouzezahrai, D., and Gross, M. 2012. Manufacturing layered attenuators for multiple prescribed shadow images. Computer Graphics Forum 31, 2 (May), 603--610. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bermano, A., Baran, I., Alexa, M., and Matusik, W. 2012. ShadowPIX: Multiple images from self-shadowing. Computer Graphics Forum 31, 2 (May), 593--602. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Bickel, B., Bächer, M., Otaduy, M. A., Matusik, W., Pfister, H., and Gross, M. 2009. Capture and modeling of non-linear heterogeneous soft tissue. ACM Trans. on Graphics (SIGGRAPH 2009) 28, 3 (July), 89:1--89:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bickel, B., Bächer, M., Otaduy, M. A., Lee, H. R., Pfister, H., Gross, M., and Matusik, W. 2010. Design and fabrication of materials with desired deformation behavior. ACM Trans. on Graphics (SIGGRAPH 2010) 29, 4 (July), 63:1--63:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Bickel, B., Kaufmann, P., Skouras, M., Thomaszewski, B., Bradley, D., Beeler, T., Jackson, P., Marschner, S., Matusik, W., and Gross, M. 2012. Physical face cloning. ACM Trans. on Graphics (SIGGRAPH 2012) 31, 4 (July), 118:1--118:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Cook, R. L. 1984. Shade trees. Computer Graphics (SIGGRAPH 84) 18, 3 (Jan), 223--231. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Cutler, B., Dorsey, J., McMillan, L., Müller, M., and Jagnow, R. 2002. A procedural approach to authoring solid models. ACM Trans. on Graphics (SIGGRAPH 2002) 21, 3 (July), 302--311. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Dong, Y., Wang, J., Pellacini, F., Tong, X., and Guo, B. 2010. Fabricating spatially-varying subsurface scattering. ACM Trans. on Graphics (SIGGRAPH 2010) 29, 4 (July), 62:1--62:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Finckh, M., Dammertz, H., and Lensch, H. P. A. 2010. Geometry construction from caustic images. Computer Vision (ECCV 2010) 6315, 464--477. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Hašan, M., Fuchs, M., Matusik, W., Pfister, H., and Rusinkiewicz, S. 2010. Physical reproduction of materials with specified subsurface scattering. ACM Trans. on Graphics (SIGGRAPH 2010) 29, 4 (July), 61:1--61:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Jackson, T. R. 2000. Analysis of Functionally Graded Material Object Representation Methods. PhD thesis, Massachusetts Institute of Technology.Google ScholarGoogle Scholar
  13. Jordan, M., Ghahramani, Z., Jaakkola, T., and Saul, L. 1999. An introduction to variational methods for graphical models. Machine Learning 37, 183--233. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Kennedy, J., and Eberhart, R. 1995. Particle swarm optimization. In Neural Networks, 1995. Proceedings., IEEE International Conference on, vol. 4, IEEE, 1942--1948.Google ScholarGoogle Scholar
  15. Kou, X., and Tan, S. 2007. Heterogeneous object modeling: A review. Computer-Aided Design 39, 4, 284--301. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Kou, X., Parks, G., and Tan, S. 2012. Optimal design of functionally graded materials using a procedural model and particle swarm optimization. Computer-Aided Design 44, 4, 300--310. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Kumar, V., Burns, D., Dutta, D., and Hoffmann, C. 1999. A framework for object modeling. Computer-Aided Design 31, 9, 541--556.Google ScholarGoogle ScholarCross RefCross Ref
  18. Low, Y., Gonzalez, J., Kyrola, A., Bickson, D., Guestrin, C., and Hellerstein, J. M. 2010. Graphlab: A new parallel framework for machine learning. Conference on Uncertainty in Artificial Intelligence (UAI) (July).Google ScholarGoogle Scholar
  19. Malzbender, T., Samadani, R., Scher, S., Crume, A., Dunn, D., and Davis, J. 2012. Printing reflectance functions. ACM Trans. on Graphics (SIGGRAPH 2012) 31, 3 (May), 20:1--20:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Matusik, W., Ajdin, B., Gu, J., Lawrence, J., Lensch, H. P. A., Pellacini, F., and Rusinkiewicz, S. 2009. Printing spatially-varying reflectance. ACM Trans. on Graphics (SIGGRAPH Asia 2009)) 28, 5 (Dec.), 128:1--128:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Mitra, N. J., and Pauly, M. 2009. Shadow art. ACM Trans. on Graphics (SIGGRAPH Asia 2009) 28, 5, 156:1--156:7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Papas, M., Jarosz, W., Jakob, W., Rusinkiewicz, S., Matusik, W., and Weyrich, T. 2011. Goal-based caustics. Computer Graphics Forum 30, 2, 503--511.Google ScholarGoogle ScholarCross RefCross Ref
  23. Papas, M., Houit, T., Nowrouzezahrai, D., Gross, M., and Jarosz, W. 2012. The magic lens: refractive steganography. ACM Trans. on Graphics (SIGGRAPH Asia 2012) 31, 6 (Nov.), 186:1--186:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Skouras, M., Thomaszewski, B., Bickel, B., and Gross, M. 2012. Computational design of rubber balloons. Computer Graphics Forum 31, 2 (May), 835--844. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. van Laarhoven, P., and Aarts, E. 1987. Simulated annealing: theory and applications, vol. 37. Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Vidimče, K., Wang, S.-P., Ragan-Kelley, J., and Matusik, W. 2013. OpenFab: A programmable pipeline for multi-material fabrication. ACM Trans. on Graphics (SIGGRAPH 2013) 32, 4 (July). Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Weyrich, T., Peers, P., Matusik, W., and Rusinkiewicz, S. 2009. Fabricating microgeometry for custom surface reflectance. ACM Trans. on Graphics (SIGGRAPH 2009) 28, 3 (July), 32:1--32:6. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Spec2Fab: a reducer-tuner model for translating specifications to 3D prints

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 32, Issue 4
        July 2013
        1215 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2461912
        Issue’s Table of Contents

        Copyright © 2013 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 21 July 2013
        Published in tog Volume 32, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader