skip to main content
research-article

Optimizing color consistency in photo collections

Published:21 July 2013Publication History
Skip Abstract Section

Abstract

With dozens or even hundreds of photos in today's digital photo albums, editing an entire album can be a daunting task. Existing automatic tools operate on individual photos without ensuring consistency of appearance between photographs that share content. In this paper, we present a new method for consistent editing of photo collections. Our method automatically enforces consistent appearance of images that share content without any user input. When the user does make changes to selected images, these changes automatically propagate to other images in the collection, while still maintaining as much consistency as possible. This makes it possible to interactively adjust an entire photo album in a consistent manner by manipulating only a few images.

Our method operates by efficiently constructing a graph with edges linking photo pairs that share content. Consistent appearance of connected photos is achieved by globally optimizing a quadratic cost function over the entire graph, treating user-specified edits as constraints in the optimization. The optimization is fast enough to provide interactive visual feedback to the user. We demonstrate the usefulness of our approach using a number of personal and professional photo collections, as well as internet collections.

Skip Supplemental Material Section

Supplemental Material

tp186.mp4

References

  1. Agarwal, S., Snavely, N., Simon, I., Seitz, S. M., and Szeliski, R. 2009. Building Rome in a day. In Proc. IEEE ICCV.Google ScholarGoogle Scholar
  2. An, X., and Pellacini, F. 2010. User-controllable color transfer. Computer Graphics Forum 29, 2, 263--271.Google ScholarGoogle ScholarCross RefCross Ref
  3. Barnes, C., Shechtman, E., Finkelstein, A., and Goldman, D. B. 2009. PatchMatch: a randomized correspondence algorithm for structural image editing. ACM Trans. Graph. 28, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Barnes, C. 2011. PatchMatch: A Fast Randomized Matching Algorithm with Application to Image and Video. PhD thesis, Princeton University. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bychkovsky, V., Paris, S., Chan, E., and Durand, F. 2011. Learning photographic global tonal adjustment with a database of input/output image pairs. In Proc. IEEE CVPR. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Caicedo, J. C., Kapoor, A., and Kang, S. B. 2011. Collaborative personalization of image enhancement. In Proc. IEEE CVPR. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Dale, K., Johnson, M. K., Sunkavalli, K., Matusik, W., and Pfister, H. 2009. Image restoration using online photo collections. In Proc. IEEE ICCV.Google ScholarGoogle Scholar
  8. Faktor, A., and Irani, M. 2012. "Clustering by Composition" - unsupervised discovery of image categories. In Proc. ECCV (7), 474--487. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Farbman, Z., and Lischinski, D. 2011. Tonal stabilization of video. ACM Trans. Graph. 30, 4, 89:1--89:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Frahm, J.-M., Georgel, P. F., Gallup, D., Johnson, T., Raguram, R., Wu, C., Jen, Y.-H., Dunn, E., Clipp, B., and Lazebnik, S. 2010. Building Rome on a cloudless day. In Proc. ECCV (4), vol. 6314, 368--381. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Gould, S., and Zhang, Y. 2012. PATCHMATCHGRAPH: building a graph of dense patch correspondences for label transfer. In Proc. ECCV, vol. Part V, 439--452. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. HaCohen, Y., Shechtman, E., Goldman, D. B., and Lischinski, D. 2011. Non-rigid dense correspondence with applications for image enhancement. ACM Trans. Graph. 30, 4, 70:1--70:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Hasinoff, S. W., Jóźwiak, M., Durand, F., and Freeman, W. T. 2010. Search-and-replace editing for personal photo collections. In Proc. ICCP.Google ScholarGoogle Scholar
  14. Joshi, N., Matusik, W., Adelson, E. H., and Kriegman, D. J. 2010. Personal photo enhancement using example images. ACM Trans. Graph. 29, 2 (April), 12:1--12:15. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Kagarlitsky, S., Moses, Y., and Hel Or, Y. 2009. Piecewise-consistent color mappings of images acquired under various conditions. In Proc. ICCV, 2311--2318.Google ScholarGoogle ScholarCross RefCross Ref
  16. Kang, S. B., Kapoor, A., and Lischinski, D. 2010. Personalization of image enhancement. In Proc. IEEE CVPR.Google ScholarGoogle Scholar
  17. Kim, K. I., Tompkin, J., Theobald, M., Kautz, J., and Theobalt, C. 2012. Match graph construction for large image databases. In Proc. ECCV. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Laffont, P.-Y., Bousseau, A., Paris, S., Durand, F., and Drettakis, G. 2012. Coherent intrinsic images from photo collections. ACM Trans. Graph. 31, 6, 202:1--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Levin, A., Lischinski, D., and Weiss, Y. 2004. Colorization using optimization. ACM Trans. Graph. 23, 3, 689--694. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Lowe, D. G. 2004. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60, 2, 91--110. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Oskam, T., Hornung, A., Sumner, R. W., and Gross, M. H. 2012. Fast and stable color balancing for images and augmented reality. In 3DIMPVT, IEEE, 49--56. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Pitié, F., Kokaram, A. C., and Dahyot, R. 2007. Automated colour grading using colour distribution transfer. Comput. Vis. Image Underst. 107 (July), 123--137. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Reinhard, E., Ashikhmin, M., Gooch, B., and Shirley, P. 2001. Color transfer between images. IEEE Comput. Graph. Appl. (September). Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Sivic, J., and Zisserman, A. 2003. Video Google: A text retrieval approach to object matching in videos. In Proc. IEEE ICCV, 1470. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Snavely, N., Seitz, S. M., and Szeliski, R. 2006. Photo tourism: exploring photo collections in 3D. ACM Trans. Graph. 25 (July), 835--846. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Snavely, N., Garg, R., Seitz, S. M., and Szeliski, R. 2008. Finding paths through the world's photos. ACM Trans. Graph. 27, 3, 11--21. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. van de Weijer, J., Gevers, T., and Gijsenij, A. 2007. Edge-based color constancy. IEEE Trans. Im. Proc. 16, 9, 2207--2214. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Yücer, K., Jacobson, A., Hornung, A., and Sorkine, O. 2012. Transfusive image manipulation. ACM Trans. Graph. 31, 6, 176:1--176:9. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Optimizing color consistency in photo collections

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 32, Issue 4
        July 2013
        1215 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2461912
        Issue’s Table of Contents

        Copyright © 2013 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 21 July 2013
        Published in tog Volume 32, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader