skip to main content
research-article

A new grid structure for domain extension

Published:21 July 2013Publication History
Skip Abstract Section

Abstract

We present an efficient grid structure that extends a uniform grid to create a significantly larger far-field grid by dynamically extending the cells surrounding a fine uniform grid while still maintaining fine resolution about the regions of interest. The far-field grid preserves almost every computational advantage of uniform grids including cache coherency, regular subdivisions for parallelization, simple data layout, the existence of efficient numerical discretizations and algorithms for solving partial differential equations, etc. This allows fluid simulations to cover large domains that are often infeasible to enclose with sufficient resolution using a uniform grid, while still effectively capturing fine scale details in regions of interest using dynamic adaptivity.

Skip Supplemental Material Section

Supplemental Material

tp041.mp4

References

  1. Adams, B., Pauly, M., Keiser, R., and Guibas, L. J. 2007. Adaptively sampled particle fluids. ACM Trans. Graph. (SIGGRAPH Proc.) 26, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Anderson, D. A., Tannehill, J. C., and Pletcher, R. H. 1997. Computational Fluid Mchanics and Heat Transfer. Taylor & Francis, 531.Google ScholarGoogle Scholar
  3. Benek, J. A., Steger, J. L., and Dougherty, F. C. 1983. A flexible grid embedding technique with applications to the euler equations. In 6th Computational Fluid Dynamics Conference, AIAA, 373--382.Google ScholarGoogle Scholar
  4. Benek, J. A., Buning, P. G., and Steger, J. L. 1985. A 3--d chimera grid embedding technique. In 7th Computational Fluid Dynamics Conference, AIAA, 322--331.Google ScholarGoogle Scholar
  5. Berger, M., and Colella, P. 1989. Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys. 82, 64--84. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Berger, M., and Oliger, J. 1984. Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 53, 484--512.Google ScholarGoogle ScholarCross RefCross Ref
  7. Brochu, T., Batty, C., and Bridson, R. 2010. Matching fluid simulation elements to surface geometry and topology. ACM Trans. Graph. (SIGGRAPH Proc.), 47:1--47:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Chentanez, N., and Müller, M. 2011. Real-time eulerian water simulation using a restricted tall cell grid. ACM Trans. Graph. (SIGGRAPH Proc.) 30, 4, 82:1--82:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Cohen, J. M., Tariq, S., and Green, S. 2010. Interactive fluid-particle simulation using translating eulerian grids. In Proc. of the 2010 ACM SIGGRAPH Symp. on Interactive 3D Graphics and Games, 15--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Dobashi, Y., Matsuda, Y., Yamamoto, T., and Nishita, T. 2008. A fast simulation method using overlapping grids for interactions between smoke and rigid objects. Comput. Graph. Forum 27, 2, 477--486.Google ScholarGoogle ScholarCross RefCross Ref
  11. Enright, D., Marschner, S., and Fedkiw, R. 2002. Animation and rendering of complex water surfaces. ACM Trans. Graph. (SIGGRAPH Proc.) 21, 3, 736--744. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Enright, D., Nguyen, D., Gibou, F., and Fedkiw, R. 2003. Using the particle level set method and a second order accurate pressure boundary condition for free surface flows. In Proc. 4th ASME-JSME Joint Fluids Eng. Conf., number FEDSM2003--45144. ASME.Google ScholarGoogle Scholar
  13. Fedkiw, R., Stam, J., and Jensen, H. 2001. Visual simulation of smoke. In Proc. of ACM SIGGRAPH 2001, 15--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Feldman, B., O'Brien, J., Klingner, B., and Goktekin, T. 2005. Fluids in deforming meshes. In Proc. of the ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 255--259. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Golas, A., Narain, R., Sewall, J., Krajcevski, P., Dubey, P., and Lin, M. 2012. Large-scale fluid simulation using velocity-vorticity domain decomposition. ACM Trans. Graph. 31, 6, 148:1--148:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Hong, J., Shinar, T., and Fedkiw, R. 2007. Wrinkled flames and cellular patterns. ACM Trans. Graph. (SIGGRAPH Proc.) 26, 3, 47. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Houston, B., Nielsen, M., Batty, C., Nilsson, O., and Museth, K. 2006. Hierarchical RLE level set: A compact and versatile deformable surface representation. ACM Trans. Graph. 25, 1, 1--24. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Irving, G., Guendelman, E., Losasso, F., and Fedkiw, R. 2006. Efficient simulation of large bodies of water by coupling two and three dimensional techniques. ACM Trans. Graph. (SIGGRAPH Proc.) 25, 3, 805--811. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Kim, B.-M., Liu, Y., Llamas, I., and Rossignac, J. 2005. Flowfixer: Using BFECC for fluid simulation. In Eurographics Workshop on Natural Phenomena 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Klingner, B. M., Feldman, B. E., Chentanez, N., and O'Brien, J. F. 2006. Fluid animation with dynamic meshes. ACM Trans. Graph. (SIGGRAPH Proc.) 25, 3, 820--825. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Losasso, F., Gibou, F., and Fedkiw, R. 2004. Simulating water and smoke with an octree data structure. ACM Trans. Graph. (SIGGRAPH Proc.) 23, 457--462. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Losasso, F., Talton, J., Kwatra, N., and Fedkiw, R. 2008. Two-way coupled sph and particle level set fluid simulation. IEEE TVCG 14, 4, 797--804. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Nguyen, D., Fedkiw, R., and Jensen, H. 2002. Physically based modeling and animation of fire. ACM Trans. Graph. (SIGGRAPH Proc.) 21, 721--728. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Rasmussen, N., Enright, D., Nguyen, D., Marino, S., Sumner, N., Geiger, W., Hoon, S., and Fedkiw, R. 2004. Directable photorealistic liquids. In Proc. of the 2004 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 193--202. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Selle, A., Rasmussen, N., and Fedkiw, R. 2005. A vortex particle method for smoke, water and explosions. ACM Trans. Graph. (SIGGRAPH Proc.) 24, 3, 910--914. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Selle, A., Fedkiw, R., Kim, B., Liu, Y., and Rossignac, J. 2008. An Unconditionally Stable MacCormack Method. J. Sci. Comp. 35, 2, 350--371. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Shah, M., Cohen, J. M., Patel, S., Lee, P., and Pighin, F. 2004. Extended galilean invariance for adaptive fluid simulation. In Proc. of the 2004 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 213--221. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Sin, F., Bargteil, A. W., and Hodgins, J. K. 2009. A point-based method for animating incompressible flow. In Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., ACM, New York, NY, USA, SCA '09, 247--255. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Söderström, A., Karlsson, M., and Museth, K. 2010. A pml-based nonreflective boundary for free surface fluid animation. ACM Trans. Graph. 29, 5, 136:1--136:17. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Solenthaler, B., and Gross, M. 2011. Two-scale particle simulation. ACM Trans. Graph. (SIGGRAPH Proc.) 30, 4, 81:1--81:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Solenthaler, B., and Pajarola, R. 2009. Predictive-corrective incompressible sph. ACM Trans. Graph. (SIGGRAPH Proc.) 28, 3, 40:1--40:6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Stam, J. 1999. Stable fluids. In Proc. of SIGGRAPH 99, 121--128. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Sussman, M., and Smereka, P. 1997. Axisymmetric free boundary problems. J. Fluid Mech. 341, 269--294.Google ScholarGoogle ScholarCross RefCross Ref
  34. Sussman, M., Algrem, A. S., Bell, J. B., Colella, P., Howell, L. H., and Welcome, M. L. 1999. An adaptive level set approach for incompressible two-phase flow. J. Comput. Phys 148, 81--124. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Takizawa, K., Yabe, T., Tsugawa, Y., Tezduyar, T. E., and Mizoe, H. 2007. Computation of free-surface flows and fluid object interactions with the cip method based on adaptive meshless soroban grids. Comput. Mech. 40, 1, 167--183.Google ScholarGoogle ScholarCross RefCross Ref
  36. Yabe, T., Mizoe, H., Takizawa, K., Moriki, H., Im, H.-N., and Ogata, Y. 2004. Higher-order schemes with cip method and adaptive soroban grid towards mesh-free scheme. J. Comput. Phys. 194, 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Zhu, Y., and Bridson, R. 2005. Animating sand as a fluid. ACM Trans. Graph. (SIGGRAPH Proc.) 24, 3, 965--972. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. A new grid structure for domain extension

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 32, Issue 4
      July 2013
      1215 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/2461912
      Issue’s Table of Contents

      Copyright © 2013 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 21 July 2013
      Published in tog Volume 32, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader