Abstract
We present an efficient grid structure that extends a uniform grid to create a significantly larger far-field grid by dynamically extending the cells surrounding a fine uniform grid while still maintaining fine resolution about the regions of interest. The far-field grid preserves almost every computational advantage of uniform grids including cache coherency, regular subdivisions for parallelization, simple data layout, the existence of efficient numerical discretizations and algorithms for solving partial differential equations, etc. This allows fluid simulations to cover large domains that are often infeasible to enclose with sufficient resolution using a uniform grid, while still effectively capturing fine scale details in regions of interest using dynamic adaptivity.
Supplemental Material
Available for Download
Supplemental material.
- Adams, B., Pauly, M., Keiser, R., and Guibas, L. J. 2007. Adaptively sampled particle fluids. ACM Trans. Graph. (SIGGRAPH Proc.) 26, 3. Google Scholar
Digital Library
- Anderson, D. A., Tannehill, J. C., and Pletcher, R. H. 1997. Computational Fluid Mchanics and Heat Transfer. Taylor & Francis, 531.Google Scholar
- Benek, J. A., Steger, J. L., and Dougherty, F. C. 1983. A flexible grid embedding technique with applications to the euler equations. In 6th Computational Fluid Dynamics Conference, AIAA, 373--382.Google Scholar
- Benek, J. A., Buning, P. G., and Steger, J. L. 1985. A 3--d chimera grid embedding technique. In 7th Computational Fluid Dynamics Conference, AIAA, 322--331.Google Scholar
- Berger, M., and Colella, P. 1989. Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys. 82, 64--84. Google Scholar
Digital Library
- Berger, M., and Oliger, J. 1984. Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 53, 484--512.Google Scholar
Cross Ref
- Brochu, T., Batty, C., and Bridson, R. 2010. Matching fluid simulation elements to surface geometry and topology. ACM Trans. Graph. (SIGGRAPH Proc.), 47:1--47:9. Google Scholar
Digital Library
- Chentanez, N., and Müller, M. 2011. Real-time eulerian water simulation using a restricted tall cell grid. ACM Trans. Graph. (SIGGRAPH Proc.) 30, 4, 82:1--82:10. Google Scholar
Digital Library
- Cohen, J. M., Tariq, S., and Green, S. 2010. Interactive fluid-particle simulation using translating eulerian grids. In Proc. of the 2010 ACM SIGGRAPH Symp. on Interactive 3D Graphics and Games, 15--22. Google Scholar
Digital Library
- Dobashi, Y., Matsuda, Y., Yamamoto, T., and Nishita, T. 2008. A fast simulation method using overlapping grids for interactions between smoke and rigid objects. Comput. Graph. Forum 27, 2, 477--486.Google Scholar
Cross Ref
- Enright, D., Marschner, S., and Fedkiw, R. 2002. Animation and rendering of complex water surfaces. ACM Trans. Graph. (SIGGRAPH Proc.) 21, 3, 736--744. Google Scholar
Digital Library
- Enright, D., Nguyen, D., Gibou, F., and Fedkiw, R. 2003. Using the particle level set method and a second order accurate pressure boundary condition for free surface flows. In Proc. 4th ASME-JSME Joint Fluids Eng. Conf., number FEDSM2003--45144. ASME.Google Scholar
- Fedkiw, R., Stam, J., and Jensen, H. 2001. Visual simulation of smoke. In Proc. of ACM SIGGRAPH 2001, 15--22. Google Scholar
Digital Library
- Feldman, B., O'Brien, J., Klingner, B., and Goktekin, T. 2005. Fluids in deforming meshes. In Proc. of the ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 255--259. Google Scholar
Digital Library
- Golas, A., Narain, R., Sewall, J., Krajcevski, P., Dubey, P., and Lin, M. 2012. Large-scale fluid simulation using velocity-vorticity domain decomposition. ACM Trans. Graph. 31, 6, 148:1--148:9. Google Scholar
Digital Library
- Hong, J., Shinar, T., and Fedkiw, R. 2007. Wrinkled flames and cellular patterns. ACM Trans. Graph. (SIGGRAPH Proc.) 26, 3, 47. Google Scholar
Digital Library
- Houston, B., Nielsen, M., Batty, C., Nilsson, O., and Museth, K. 2006. Hierarchical RLE level set: A compact and versatile deformable surface representation. ACM Trans. Graph. 25, 1, 1--24. Google Scholar
Digital Library
- Irving, G., Guendelman, E., Losasso, F., and Fedkiw, R. 2006. Efficient simulation of large bodies of water by coupling two and three dimensional techniques. ACM Trans. Graph. (SIGGRAPH Proc.) 25, 3, 805--811. Google Scholar
Digital Library
- Kim, B.-M., Liu, Y., Llamas, I., and Rossignac, J. 2005. Flowfixer: Using BFECC for fluid simulation. In Eurographics Workshop on Natural Phenomena 2005. Google Scholar
Digital Library
- Klingner, B. M., Feldman, B. E., Chentanez, N., and O'Brien, J. F. 2006. Fluid animation with dynamic meshes. ACM Trans. Graph. (SIGGRAPH Proc.) 25, 3, 820--825. Google Scholar
Digital Library
- Losasso, F., Gibou, F., and Fedkiw, R. 2004. Simulating water and smoke with an octree data structure. ACM Trans. Graph. (SIGGRAPH Proc.) 23, 457--462. Google Scholar
Digital Library
- Losasso, F., Talton, J., Kwatra, N., and Fedkiw, R. 2008. Two-way coupled sph and particle level set fluid simulation. IEEE TVCG 14, 4, 797--804. Google Scholar
Digital Library
- Nguyen, D., Fedkiw, R., and Jensen, H. 2002. Physically based modeling and animation of fire. ACM Trans. Graph. (SIGGRAPH Proc.) 21, 721--728. Google Scholar
Digital Library
- Rasmussen, N., Enright, D., Nguyen, D., Marino, S., Sumner, N., Geiger, W., Hoon, S., and Fedkiw, R. 2004. Directable photorealistic liquids. In Proc. of the 2004 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 193--202. Google Scholar
Digital Library
- Selle, A., Rasmussen, N., and Fedkiw, R. 2005. A vortex particle method for smoke, water and explosions. ACM Trans. Graph. (SIGGRAPH Proc.) 24, 3, 910--914. Google Scholar
Digital Library
- Selle, A., Fedkiw, R., Kim, B., Liu, Y., and Rossignac, J. 2008. An Unconditionally Stable MacCormack Method. J. Sci. Comp. 35, 2, 350--371. Google Scholar
Digital Library
- Shah, M., Cohen, J. M., Patel, S., Lee, P., and Pighin, F. 2004. Extended galilean invariance for adaptive fluid simulation. In Proc. of the 2004 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 213--221. Google Scholar
Digital Library
- Sin, F., Bargteil, A. W., and Hodgins, J. K. 2009. A point-based method for animating incompressible flow. In Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., ACM, New York, NY, USA, SCA '09, 247--255. Google Scholar
Digital Library
- Söderström, A., Karlsson, M., and Museth, K. 2010. A pml-based nonreflective boundary for free surface fluid animation. ACM Trans. Graph. 29, 5, 136:1--136:17. Google Scholar
Digital Library
- Solenthaler, B., and Gross, M. 2011. Two-scale particle simulation. ACM Trans. Graph. (SIGGRAPH Proc.) 30, 4, 81:1--81:8. Google Scholar
Digital Library
- Solenthaler, B., and Pajarola, R. 2009. Predictive-corrective incompressible sph. ACM Trans. Graph. (SIGGRAPH Proc.) 28, 3, 40:1--40:6. Google Scholar
Digital Library
- Stam, J. 1999. Stable fluids. In Proc. of SIGGRAPH 99, 121--128. Google Scholar
Digital Library
- Sussman, M., and Smereka, P. 1997. Axisymmetric free boundary problems. J. Fluid Mech. 341, 269--294.Google Scholar
Cross Ref
- Sussman, M., Algrem, A. S., Bell, J. B., Colella, P., Howell, L. H., and Welcome, M. L. 1999. An adaptive level set approach for incompressible two-phase flow. J. Comput. Phys 148, 81--124. Google Scholar
Digital Library
- Takizawa, K., Yabe, T., Tsugawa, Y., Tezduyar, T. E., and Mizoe, H. 2007. Computation of free-surface flows and fluid object interactions with the cip method based on adaptive meshless soroban grids. Comput. Mech. 40, 1, 167--183.Google Scholar
Cross Ref
- Yabe, T., Mizoe, H., Takizawa, K., Moriki, H., Im, H.-N., and Ogata, Y. 2004. Higher-order schemes with cip method and adaptive soroban grid towards mesh-free scheme. J. Comput. Phys. 194, 1. Google Scholar
Digital Library
- Zhu, Y., and Bridson, R. 2005. Animating sand as a fluid. ACM Trans. Graph. (SIGGRAPH Proc.) 24, 3, 965--972. Google Scholar
Digital Library
Index Terms
A new grid structure for domain extension
Recommendations
An adaptive staggered-tilted grid for incompressible flow simulation
Enabling adaptivity on a uniform Cartesian grid is challenging due to its highly structured grid cells and axis-aligned grid lines. In this paper, we propose a new grid structure - the adaptive staggered-tilted (AST) grid - to conduct adaptive fluid ...
Interoperability of BOINC and EGEE
Today basically two types of grid systems are in use: service grids and desktop grids. Service grids offer an infrastructure for grid users, thus require notable management to keep the service running. On the other hand, desktop grids aim to utilize ...
A Science Driven Production Cyberinfrastructure--the Open Science Grid
This article describes the Open Science Grid, a large distributed computational infrastructure in the United States which supports many different high-throughput scientific applications, and partners (federates) with other infrastructures nationally and ...





Comments