skip to main content
research-article

Globally optimal direction fields

Published:21 July 2013Publication History
Skip Abstract Section

Abstract

We present a method for constructing smooth n-direction fields (line fields, cross fields, etc.) on surfaces that is an order of magnitude faster than state-of-the-art methods, while still producing fields of equal or better quality. Fields produced by the method are globally optimal in the sense that they minimize a simple, well-defined quadratic smoothness energy over all possible configurations of singularities (number, location, and index). The method is fully automatic and can optionally produce fields aligned with a given guidance field such as principal curvature directions. Computationally the smoothest field is found via a sparse eigenvalue problem involving a matrix similar to the cotan-Laplacian. When a guidance field is present, finding the optimal field amounts to solving a single linear system.

Skip Supplemental Material Section

Supplemental Material

tp174.mp4

References

  1. Ahlfors, L. V. 1966. Complex Analysis, 2nd Ed. McGraw-Hill.Google ScholarGoogle Scholar
  2. Ben-Chen, M., Butscher A., Solomon, J., and Guibas, L. 2010. On Discrete Killing Vector Fields and Patterns on Surfaces. Comp. Graph. Forum 29, 5, 1701--1711.Google ScholarGoogle ScholarCross RefCross Ref
  3. Bommes, D., Zimmer, H., and Kobbelt, L. 2009. Mixed-Integer Quadrangulation. ACM Trans. Graph. 28, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Bommes, D., Zimmer, H., and Kobbelt, L. 2012. Practical Mixed-Integer Optimization for Geometry Processing. In Proc. 7th Int. Conf. Curves & Surfaces, 193--206. Project page: http://www.graphics.rwth-aachen.de/software/comiso. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Chen, Y., Davis, T. A., Hager, W W., and Rajamanickam, S. 2009. Algorithm 887: CHOLMOD, Supernodal Sparse Cholesky Factorization and Update/Downdate. ACM Trans. Math. Softw. 35, 3, 22:1--22:14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Cohen-Steiner D., and Morvan, J.-M. 2003. Restricted Delaunay Triangulations and Normal Cycle. In Proc. Symp. Comp. Geom., 312--321. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Crane, K., Desbrun, M., and Schröder, P. 2010. Trivial Connections on Discrete Surfaces. Comp. Graph. Forum 29, 5, 1525--1533.Google ScholarGoogle ScholarCross RefCross Ref
  8. Desbrun, M., Meyer, M., and Alliez, P. 2002. Intrinsic Parameterizations of Surface Meshes. Comp. Graph. Forum 21, 3, 209--218.Google ScholarGoogle ScholarCross RefCross Ref
  9. Desbrun, M., Kanso, E., and Tong, Y. 2008. Discrete Differential Forms for Computational Modeling. In Discrete Differential Geometry, A. I. Bobenko, P. Schröder, J. M. Sullivan, and G. M. Ziegler, Eds., Vol. 38 of Oberwolfach Seminars. Birkhäuser Verlag, 287--324.Google ScholarGoogle Scholar
  10. Fisher, M., Schröder, P., Desbrun, M., and Hoppe, H. 2007. Design of Tangent Vector Fields. ACM Trans. Graph. 26, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Gil, A., Segura, J., and Temme, N. M. 2007. Numerical Methods for Special Functions. SIAM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Gu, X., and Yau, S.-T. 2003. Global Conformal Surface Parameterization. In Proc. Symp. Geom. Proc., 127--137. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Hertzmann, A., and Zorin, D. 2000. Illustrating Smooth Surfaces. In Proc. ACM/SIGGRAPH Conf., 517--526. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Kälberer F., Nieser, M., and Polthier, K. 2007. QuadCover - Surface Parameterization using Branched Coverings. Comp. Graph. Forum 26, 3, 375--384.Google ScholarGoogle ScholarCross RefCross Ref
  15. Kass, M., and Witkin, A. 1987. Analyzing Oriented Patterns. Comp. Vis., Graph., Im. Proc. 37, 3, 362--385. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Lefebvre, S., and Hoppe, H. 2006. Appearance-space Texture Synthesis. ACM Trans. Graph. 25, 3, 541--548. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Lévy, B., Petitjean, S., Ray, N., and Maillot, J. 2002. Least Squares Conformal Maps for Automatic Texture Atlas Generation. ACM Trans. Graph. 21, 3, 362--371. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Ling, C., Nie, J., Qi, L., and Ye, Y. 2009. Biquadratic Optimization Over Unit Spheres and Semidefinite Programming Relaxations. SIAM J. on Opt. 20, 3, 1286--1310. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. MacNeal, R. 1949. The Solution of Partial Differential Equations by means of Electrical Networks. PhD thesis, Caltech.Google ScholarGoogle Scholar
  20. Mullen, P., Tong, Y., Alliez, P., and Desbrun, M. 2008. Spectral Conformal Parameterization. Comp. Graph. Forum 27, 5, 1487--1494. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Napier, T, and Ramachandran, M. 2011. An Introduction to Riemann Surfaces. Birkhäuser.Google ScholarGoogle Scholar
  22. Nieser M., Palacios, J., Polthier, K, and Zhang, E. 2012. Hexagonal Global Parameterization of Arbitrary Surfaces. IEEE Trans. Vis. Comp. Graph. 18, 6, 865--878. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Palacios, J., and Zhang, E. 2007. Rotational Symmetry Field Design on Surfaces. ACM Trans. Graph. 26, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Pinkall, U., and Polthier, K. 1993. Computing Discrete Minimal Surfaces and Their Conjugates. Experiment. Math. 2, 1, 15--36.Google ScholarGoogle ScholarCross RefCross Ref
  25. Polthier, K., and Schmies, M. 1998. Straightest Geodesies on Polyhedral Surfaces. In Mathematical Visualization: Algorithms, Applications and Numerics, H.-C. Hege and K. Polthier, Eds. Springer Verlag, 135--152.Google ScholarGoogle Scholar
  26. Ray, N., Li, W. C., Lévy, B., Sheffer, A., and Alliez, P. 2006. Periodic Global Parameterization. ACM Trans. Graph. 25, 4, 1460--1485. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Ray, N., Vallet, B., Li, W. C., and Lévy, B. 2008. N-Symmetry Direction Field Design. ACM Trans. Graph. 27, 2, 10:1--10:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Ray, N., Vallet, B., Alonso, L., and Lévy, B. 2009. Geometry Aware Direction Field Processing. ACM Trans. Graph. 29, 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Wirtinger, W. 1927. Zur formalen Theorie der Funktionen von mehr komplexen Veränderlichen. Math. Ann. 97, 1, 357--375.Google ScholarGoogle ScholarCross RefCross Ref
  30. Zhang, E., Mischaikow, K., and Turk, G. 2006. Vector Field Design on Surfaces. ACM Trans. Graph. 25, 4, 1294--1326. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Globally optimal direction fields

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 32, Issue 4
        July 2013
        1215 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2461912
        Issue’s Table of Contents

        Copyright © 2013 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 21 July 2013
        Published in tog Volume 32, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader