Abstract
We present a method for constructing smooth n-direction fields (line fields, cross fields, etc.) on surfaces that is an order of magnitude faster than state-of-the-art methods, while still producing fields of equal or better quality. Fields produced by the method are globally optimal in the sense that they minimize a simple, well-defined quadratic smoothness energy over all possible configurations of singularities (number, location, and index). The method is fully automatic and can optionally produce fields aligned with a given guidance field such as principal curvature directions. Computationally the smoothest field is found via a sparse eigenvalue problem involving a matrix similar to the cotan-Laplacian. When a guidance field is present, finding the optimal field amounts to solving a single linear system.
Supplemental Material
Available for Download
Supplemental material.
- Ahlfors, L. V. 1966. Complex Analysis, 2nd Ed. McGraw-Hill.Google Scholar
- Ben-Chen, M., Butscher A., Solomon, J., and Guibas, L. 2010. On Discrete Killing Vector Fields and Patterns on Surfaces. Comp. Graph. Forum 29, 5, 1701--1711.Google Scholar
Cross Ref
- Bommes, D., Zimmer, H., and Kobbelt, L. 2009. Mixed-Integer Quadrangulation. ACM Trans. Graph. 28, 3. Google Scholar
Digital Library
- Bommes, D., Zimmer, H., and Kobbelt, L. 2012. Practical Mixed-Integer Optimization for Geometry Processing. In Proc. 7th Int. Conf. Curves & Surfaces, 193--206. Project page: http://www.graphics.rwth-aachen.de/software/comiso. Google Scholar
Digital Library
- Chen, Y., Davis, T. A., Hager, W W., and Rajamanickam, S. 2009. Algorithm 887: CHOLMOD, Supernodal Sparse Cholesky Factorization and Update/Downdate. ACM Trans. Math. Softw. 35, 3, 22:1--22:14. Google Scholar
Digital Library
- Cohen-Steiner D., and Morvan, J.-M. 2003. Restricted Delaunay Triangulations and Normal Cycle. In Proc. Symp. Comp. Geom., 312--321. Google Scholar
Digital Library
- Crane, K., Desbrun, M., and Schröder, P. 2010. Trivial Connections on Discrete Surfaces. Comp. Graph. Forum 29, 5, 1525--1533.Google Scholar
Cross Ref
- Desbrun, M., Meyer, M., and Alliez, P. 2002. Intrinsic Parameterizations of Surface Meshes. Comp. Graph. Forum 21, 3, 209--218.Google Scholar
Cross Ref
- Desbrun, M., Kanso, E., and Tong, Y. 2008. Discrete Differential Forms for Computational Modeling. In Discrete Differential Geometry, A. I. Bobenko, P. Schröder, J. M. Sullivan, and G. M. Ziegler, Eds., Vol. 38 of Oberwolfach Seminars. Birkhäuser Verlag, 287--324.Google Scholar
- Fisher, M., Schröder, P., Desbrun, M., and Hoppe, H. 2007. Design of Tangent Vector Fields. ACM Trans. Graph. 26, 3. Google Scholar
Digital Library
- Gil, A., Segura, J., and Temme, N. M. 2007. Numerical Methods for Special Functions. SIAM. Google Scholar
Digital Library
- Gu, X., and Yau, S.-T. 2003. Global Conformal Surface Parameterization. In Proc. Symp. Geom. Proc., 127--137. Google Scholar
Digital Library
- Hertzmann, A., and Zorin, D. 2000. Illustrating Smooth Surfaces. In Proc. ACM/SIGGRAPH Conf., 517--526. Google Scholar
Digital Library
- Kälberer F., Nieser, M., and Polthier, K. 2007. QuadCover - Surface Parameterization using Branched Coverings. Comp. Graph. Forum 26, 3, 375--384.Google Scholar
Cross Ref
- Kass, M., and Witkin, A. 1987. Analyzing Oriented Patterns. Comp. Vis., Graph., Im. Proc. 37, 3, 362--385. Google Scholar
Digital Library
- Lefebvre, S., and Hoppe, H. 2006. Appearance-space Texture Synthesis. ACM Trans. Graph. 25, 3, 541--548. Google Scholar
Digital Library
- Lévy, B., Petitjean, S., Ray, N., and Maillot, J. 2002. Least Squares Conformal Maps for Automatic Texture Atlas Generation. ACM Trans. Graph. 21, 3, 362--371. Google Scholar
Digital Library
- Ling, C., Nie, J., Qi, L., and Ye, Y. 2009. Biquadratic Optimization Over Unit Spheres and Semidefinite Programming Relaxations. SIAM J. on Opt. 20, 3, 1286--1310. Google Scholar
Digital Library
- MacNeal, R. 1949. The Solution of Partial Differential Equations by means of Electrical Networks. PhD thesis, Caltech.Google Scholar
- Mullen, P., Tong, Y., Alliez, P., and Desbrun, M. 2008. Spectral Conformal Parameterization. Comp. Graph. Forum 27, 5, 1487--1494. Google Scholar
Digital Library
- Napier, T, and Ramachandran, M. 2011. An Introduction to Riemann Surfaces. Birkhäuser.Google Scholar
- Nieser M., Palacios, J., Polthier, K, and Zhang, E. 2012. Hexagonal Global Parameterization of Arbitrary Surfaces. IEEE Trans. Vis. Comp. Graph. 18, 6, 865--878. Google Scholar
Digital Library
- Palacios, J., and Zhang, E. 2007. Rotational Symmetry Field Design on Surfaces. ACM Trans. Graph. 26, 3. Google Scholar
Digital Library
- Pinkall, U., and Polthier, K. 1993. Computing Discrete Minimal Surfaces and Their Conjugates. Experiment. Math. 2, 1, 15--36.Google Scholar
Cross Ref
- Polthier, K., and Schmies, M. 1998. Straightest Geodesies on Polyhedral Surfaces. In Mathematical Visualization: Algorithms, Applications and Numerics, H.-C. Hege and K. Polthier, Eds. Springer Verlag, 135--152.Google Scholar
- Ray, N., Li, W. C., Lévy, B., Sheffer, A., and Alliez, P. 2006. Periodic Global Parameterization. ACM Trans. Graph. 25, 4, 1460--1485. Google Scholar
Digital Library
- Ray, N., Vallet, B., Li, W. C., and Lévy, B. 2008. N-Symmetry Direction Field Design. ACM Trans. Graph. 27, 2, 10:1--10:13. Google Scholar
Digital Library
- Ray, N., Vallet, B., Alonso, L., and Lévy, B. 2009. Geometry Aware Direction Field Processing. ACM Trans. Graph. 29, 1. Google Scholar
Digital Library
- Wirtinger, W. 1927. Zur formalen Theorie der Funktionen von mehr komplexen Veränderlichen. Math. Ann. 97, 1, 357--375.Google Scholar
Cross Ref
- Zhang, E., Mischaikow, K., and Turk, G. 2006. Vector Field Design on Surfaces. ACM Trans. Graph. 25, 4, 1294--1326. Google Scholar
Digital Library
Index Terms
Globally optimal direction fields
Recommendations
Stripe patterns on surfaces
Stripe patterns are ubiquitous in nature, describing macroscopic phenomena such as stripes on plants and animals, down to material impurities on the atomic scale. We propose a method for synthesizing stripe patterns on triangulated surfaces, where ...
μ-Bases and singularities of rational planar curves
We provide a technique to detect the singularities of rational planar curves and to compute the correct order of each singularity including the infinitely near singularities without resorting to blow ups. Our approach employs the given parametrization ...
On fair parametric rational cubic curves
AbstractFirst we derive conditions that a parametric rational cubic curve segment, with a parameter, interpolating to plane Hermite data {(x i (k) ,y i (k) ),i = 0, 1;k = 0, 1} contains neither inflection points nor singularities on its segment. Next we ...





Comments