skip to main content
research-article

Non-polynomial Galerkin projection on deforming meshes

Published:21 July 2013Publication History
Skip Abstract Section

Abstract

This paper extends Galerkin projection to a large class of non-polynomial functions typically encountered in graphics. We demonstrate the broad applicability of our approach by applying it to two strikingly different problems: fluid simulation and radiosity rendering, both using deforming meshes. Standard Galerkin projection cannot efficiently approximate these phenomena. Our approach, by contrast, enables the compact representation and approximation of these complex non-polynomial systems, including quotients and roots of polynomials. We rely on representing each function to be model-reduced as a composition of tensor products, matrix inversions, and matrix roots. Once a function has been represented in this form, it can be easily model-reduced, and its reduced form can be evaluated with time and memory costs dependent only on the dimension of the reduced space.

Skip Supplemental Material Section

Supplemental Material

tp103.mp4

References

  1. An, S. S., Kim, T., and James, D. L. 2008. Optimizing cubature for efficient integration of subspace deformations. ACM Transactions on Graphics 27, 5 (Dec.), 165:1--165:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Ausseur, J., Pinier, J., Glauser, M., and Higuchi, H. 2004. Predicting the dynamics of the flow over a NACA 4412 using POD. APS Meeting Abstracts, D8.Google ScholarGoogle Scholar
  3. Barbič, J., and James, D. 2005. Real-time subspace integration for St. Venant-Kirchhoff deformable models. In Proc. SIGGRAPH '05. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Barbič, J., and Popović, J. 2008. Real-time control of physically based simulations using gentle forces. ACM Transactions on Graphics 27, 5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Benzi, M., Golub, G. H., and Liesen, J. 2005. Numerical solution of saddle point problems. Acta Numerica 14, 1--137.Google ScholarGoogle ScholarCross RefCross Ref
  6. Carlberg, K., Bou-Mosleh, C., and Farhat, C. 2011. Efficient non-linear model reduction via a least-squares Petrov-Galerkin projection and compressive tensor approximations. International Journal for Numerical Methods in Engineering 86, 2, 155--181.Google ScholarGoogle ScholarCross RefCross Ref
  7. Cgal, Computational Geometry Algorithms Library. http://www.cgal.org.Google ScholarGoogle Scholar
  8. Chadwick, J., An, S. S., and James, D. L. 2009. Harmonic shells: A practical nonlinear sound model for near-rigid thin shells. ACM Transactions on Graphics 28, 5 (Dec.), 119:1--119:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Chahlaoui, Y., and van Dooren, P. 2005. Model reduction of time-varying systems. In Dimension Reduction of Large-Scale Systems. Springer, 131--148.Google ScholarGoogle Scholar
  10. de Witt, T., Lessig, C., and Fiume, E. 2012. Fluid simulation using Laplacian eigenfunctions. ACM Transactions on Graphics 31, 1 (Jan.). Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Debusschere, B. J., Najm, H. N., Pebay, P. P., Knio, O. M., Ghanem, R. G., and Maitre, O. P. L. 2004. Numerical challenges in the use of polynomial chaos representations for stochastic processes. SIAM J. Sci. Comp. 26, 2, 698--719. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Deconinck, H., and Ricchiuto, M. 2007. Residual distribution schemes: foundation and analysis. In Encyclopedia of Computational Mechanics, E. Stein, E. de Borst, and T. Hughes, Eds., vol. 3. John Wiley and Sons, Ltd.Google ScholarGoogle Scholar
  13. Dobes, J., and Deconinck, H. 2006. An ALE formulation of the multidimensional residual distribution scheme for computations on moving meshes. In Proc. Int. Conf. CFD.Google ScholarGoogle Scholar
  14. Dorsey, J., Sillion, F., and Greenberg, D. 1991. Design and simulation of opera lighting and projection effects. In Computer Graphics (Proceedings of SIGGRAPH 91), 41--50. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Drettakis, G., and Sillion, F. 1997. Interactive update of global illumination using a line-space hierarchy. In Proceedings of SIGGRAPH 97, Computer Graphics Proceedings, Annual Conference Series, 57--64. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Ebert, F., and Stykel, T. 2007. Rational interpolation, minimal realization and model reduction. Tech. rep., DFG Research Center Matheon.Google ScholarGoogle Scholar
  17. Elcott, S., Tong, Y., Kanso, E., Schröder, P., and Desbrun, M. 2007. Stable, circulation-preserving, simplicial fluids. ACM Transactions on Graphics 26, 1 (Jan.). Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Farhood, M., and Dullerud, G. E. 2007. Model reduction of nonstationary LPV systems. IEEE Transactions on Automatic Control 52, 2, 181--196.Google ScholarGoogle ScholarCross RefCross Ref
  19. Feldman, B. E., O'Brien, J. F., and Klingner, B. M. 2005. Animating gases with hybrid meshes. In Proc. SIGGRAPH '05. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Feldman, B. E., O'Brien, J. F., Klingner, B. M., and Goktekin, T. G. 2005. Fluids in deforming meshes. In 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 255--260. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Fogleman, M., Lumley, J., Rempfer, D., and Haworth, D. 2004. Application of the proper orthogonal decomposition to datasets of internal combustion engine flows. Journal of Turbulence 5, 23 (June).Google ScholarGoogle ScholarCross RefCross Ref
  22. Foster, N., and Metaxas, D. 1996. Realistic animation of liquids. Graphical Models and Image Processing 58, 5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Gallivan, K., Grimme, E., and Dooren, P. V. 1996. A rational Lanczos algorithm for model reduction. Numerical Algorithms 12, 33--63.Google ScholarGoogle ScholarCross RefCross Ref
  24. Goral, C. M., Torrance, K. E., Greenberg, D. P., and Battaile, B. 1984. Modeling the interaction of light between diffuse surfaces. Computer Graphics 18, 3 (July), 213--222. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Grimme, E. J. 1997. Krylov Projection Methods For Model Reduction. PhD thesis, Ohio State University.Google ScholarGoogle Scholar
  26. Gugercin, S., and Antoulas, A. 2004. A survey of model reduction by balanced truncation and some new results. International Journal of Control 77, 8, 748--766.Google ScholarGoogle ScholarCross RefCross Ref
  27. Gugercin, S., Antoulas, A., and Beattie, C. A. 2006. A rational Krylov iteration for optimal H2 model reduction. In Intl. Symposium on Mathematical Theory of Networks and Systems.Google ScholarGoogle Scholar
  28. Gupta, M., and Narasimhan, S. G. 2007. Legendre fluids: A unified framework for analytic reduced space modeling and rendering of participating media. In 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 17--26. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Hanrahan, P., Salzman, D., and Aupperle, L. 1991. A rapid hierarchical radiosity algorithm. In Proc of SIGGRAPH. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Hauser, K. K., Shen, C., and O'Brien, J. F. 2003. Interactive deformation using modal analysis with constraints. In Graphics Interface, CIPS, Canadian Human-Computer Commnication Society, 247--256.Google ScholarGoogle Scholar
  31. Hossain, M.-S., and Benner, P. 2008. Projection-based model reduction for time-varying descriptor systems using recycled Krylov subspaces. Proceedings in Applied Mathematics and Mechanics 8, 1, 10081--10084.Google ScholarGoogle ScholarCross RefCross Ref
  32. James, D. L., and Fatahalian, K. 2003. Precomputing interactive dynamic deformable scenes. In Proc. SIGGRAPH '03. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. James, D. L., and Pai, D. K. 2002. DyRT: Dynamic response textures for real time deformation simulation with graphics hardware. ACM Transactions on Graphics 21, 3 (July), 582--585. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. James, D. L., Barbic, J., and Pai, D. K. 2006. Precomputed acoustic transfer: output-sensitive, accurate sound generation for geometrically complex vibration sources. ACM Transactions on Graphics 25, 3 (July), 987--995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Kim, T., and Delaney, J. 2013. Subspace fluid re-simulation. ACM Transactions on Graphics 32, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Kim, T., and James, D. L. 2009. Skipping steps in deformable simulation with online model reduction. ACM Transactions on Graphics 28, 5 (Dec.), 123:1--123:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Kim, T., and James, D. L. 2011. Physics-based character skinning using multi-domain subspace deformations. In Proc. SCA '11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Klingner, B. M., and Shewchuk, J. R. 2007. Agressive tetrahedral mesh improvement. In Proceedings of the 16th International Meshing Roundtable, 3--23.Google ScholarGoogle Scholar
  39. Klingner, B. M., Feldman, B. E., Chentanez, N., and O'Brien, J. F. 2006. Fluid animation with dynamic meshes. ACM Transactions on Graphics 25, 3 (July), 820--825. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Li, J.-R. 2000. Model Reduction of Large Linear Systems. PhD thesis, Massachusetts Institute of Techology.Google ScholarGoogle Scholar
  41. Liua, C., Yuan, X., Mullaguru, A., and Fan, J. 2008. Model order reduction via rational transfer function fitting and eigenmode analysis. In International Conference on Modeling, Identification and Control.Google ScholarGoogle Scholar
  42. Loos, B. J., Antani, L., Mitchell, K., Nowrouzezahrai, D., Jarosz, W., and Sloan, P.-P. 2011. Modular radiance transfer. ACM Transactions on Graphics 30, 6 (Dec.). Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Loos, B. J., Nowrouzezahrai, D., Jarosz, W., and Sloan, P.-P. 2012. Delta radiance transfer. In Proceedings of the 2012 ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, ACM, New York, NY, USA, I3D 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Mullen, P., Crane, K., Pavlov, D., Tong, Y., and Desbrun, M. 2009. Energy-preserving integrators for fluid animation. ACM Transactions on Graphics 28, 3 (July), 38:1--38:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Olssen, K. H. A. 2005. Model Order Reduction with Rational Krylov Methods. PhD thesis, KTH Stockholm.Google ScholarGoogle Scholar
  46. Pavlov, D., Mullen, P., Tong, Y., Kanso, E., Marsden, J., and Desbrun, M. 2011. Structure-preserving discretization of incompressible fluids. Physica D: Nonlinear Phenomena 240, 6, 443--458.Google ScholarGoogle ScholarCross RefCross Ref
  47. Pentland, A., and Williams, J. 1989. Good vibrations: Modal dynamics for graphics and animation. Computer Graphics (SIGGRAPH 89) 23, 3 (July), 215--222. Held in Boston, Massachusetts. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Pharr, M., and Humphreys, G. 2004. Physically Based Rendering: From Theory to Implementation. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Phillips, J. R. 1998. Model reduction of time-varying linear systems using approximate multipoint Krylov-subspace projectors. Computer Aided Design, 96--102. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Rowley, C. W., and Marsden, J. E. 2000. Reconstruction equations and the Karhunen-Loéve expansion for systems with symmetry. Phys. D 142, 1-2, 1--19. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Rowley, C. W., Kevrekidis, I. G., Marsden, J. E., and Lust, K. 2003. Reduction and reconstruction for self-similar dynamical systems. Nonlinearity 16 (July), 1257--1275.Google ScholarGoogle ScholarCross RefCross Ref
  52. Sandberg, H., and Rantzer, A. 2004. Balanced truncation of linear time-varying systems. IEEE Transactions on Automatic Control 49, 2, 217--229.Google ScholarGoogle ScholarCross RefCross Ref
  53. Savas, B., and Eldén, L. 2009. Krylov subspace methods for tensor computations. Tech. Rep. LITH-MAT-R-2009-02-SE, Department of Mathematics, Linköpings Universitet.Google ScholarGoogle Scholar
  54. Schmit, R., and Glasuer, M. 2002. Low dimensional tools for flow-structure interaction problems: Application to micro air vehicles. APS Meeting Abstracts (Nov.), D1+.Google ScholarGoogle Scholar
  55. Sewall, J., Mecklenburg, P., Mitran, S., and Lin, M. 2007. Fast fluid simulation using residual distribution schemes. In Proc. Eurographics Workshop on Natural Phenomena. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Si, H. 2007. A quality tetrahedral mesh generator and 3-dimensional Delaunay triangulator. http://tetgen.berlios.de/.Google ScholarGoogle Scholar
  57. Sloan, P.-P., Kautz, J., and Snyder, J. 2002. Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. In Proc. SIGGRAPH '02. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Sloan, P.-P., Luna, B., and Snyder, J. 2005. Local, deformable precomputed radiance transfer. ACM Transactions on Graphics 24, 3 (Aug.), 1216--1224. Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Sorkine, O. 2006. Differential representations for mesh processing. Computer Graphics Forum 25, 4, 789--807.Google ScholarGoogle ScholarCross RefCross Ref
  60. Stam, J. 1999. Stable fluids. In Computer Graphics (SIGGRAPH 99). Google ScholarGoogle ScholarDigital LibraryDigital Library
  61. Treuille, A., Lewis, A., and Popović, Z. 2006. Model reduction for real-time fluids. In Proc. SIGGRAPH '06. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Wicke, M., Stanton, M., and Treuille, A. 2009. Modular bases for fluid dynamics. ACM Transactions on Graphics 28, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  63. Zatz, H. R. 1993. Galerkin radiosity: a higher order solution method for global illumination. In Proc. SIGGRAPH '93, ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. Zhou, Y. 2002. Numerical Methods for Large Scale Matrix Equations with Applications in LTI System Model Reduction. PhD thesis, Rice University.Google ScholarGoogle Scholar

Index Terms

  1. Non-polynomial Galerkin projection on deforming meshes

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 32, Issue 4
          July 2013
          1215 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/2461912
          Issue’s Table of Contents

          Copyright © 2013 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 21 July 2013
          Published in tog Volume 32, Issue 4

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader