skip to main content
research-article

Thin skin elastodynamics

Published:21 July 2013Publication History
Skip Abstract Section

Abstract

We present a novel approach for simulating thin hyperelastic skin. Real human skin is only a few millimeters thick. It can stretch and slide over underlying body structures such as muscles, bones, and tendons, revealing rich details of a moving character. Simulating such skin is challenging because it is in close contact with the body and shares its geometry. Despite major advances in simulating elastodynamics of cloth and soft bodies for computer graphics, such methods are difficult to use for simulating thin skin due to the need to deal with non-conforming meshes, collision detection, and contact response. We propose a novel Eulerian representation of skin that avoids all the difficulties of constraining the skin to lie on the body surface by working directly on the surface itself. Skin is modeled as a 2D hyperelastic membrane with arbitrary topology, which makes it easy to cover an entire character or object. Unlike most Eulerian simulations, we do not require a regular grid and can use triangular meshes to model body and skin geometry. The method is easy to implement, and can use low resolution meshes to animate high-resolution details stored in texture-like maps. Skin movement is driven by the animation of body shape prescribed by an artist or by another simulation, and so it can be easily added as a post-processing stage to an existing animation pipeline. We provide several examples simulating human and animal skin, and skin-tight clothes.

Skip Supplemental Material Section

Supplemental Material

tp130.mp4

References

  1. Albrecht, I., Haber, J., and Seidel, H.-P. 2003. Construction and animation of anatomically based human hand models. In ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 98--109. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Baraff, D., and Witkin, A. 1998. Large steps in cloth simulation. In Proc. SIGGRAPH 1998, Annual Conference Series, 43--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bargteil, A. W., Wojtan, C., Hodgins, J. K., and Turk, G. 2007. A Finite Element Method for Animating Large Viscoplastic Flow. ACM Trans. Graph. 26, 3 (July), 16:1--16:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Beeler, T., Hahn, F., Bradley, D., Bickel, B., Beardsley, P., Gotsman, C., Sumner, R., and Gross, M. 2011. High-quality passive facial performance capture using anchor frames. ACM Trans. Graph. 30, 4 (July), 75:1--75:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Choe, B., Lee, H., and Ko, H. 2001. Performance-driven muscle-based facial animation. The Journal of Visualization and Computer Animation 12, 2, 67--79.Google ScholarGoogle ScholarCross RefCross Ref
  6. Davis, T. A. 2006. Direct Methods for Sparse Linear Systems. SIAM Book Series on the Fundamentals of Algorithms. SIAM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Dong, S., Bremer, P.-T., Garland, M., Pascucci, V., and Hart, J. C. 2006. Spectral surface quadrangulation. ACM Trans. Graph. 25, 3 (July), 1057--1066. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Fan, Y., Levin, D. I. W., Litven, J., and Pai, D. K., 2013. Eulerian-on-Lagrangian simulation. To appear In ACM Transactions on Graphics. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Feldman, B. E., O'Brien, J. F., Klingner, B. M., and Goktekin, T. G. 2005. Fluids in deforming meshes. In ACM SIGGRAPH/Eurographics symposium on Computer Animation, 255--259. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Gourret, J.-P., Thalmann, N. M., and Thalmann, D. 1989. Simulation of object and human skin formations in a grasping task. In Computer Graphics, vol. 23, 21--30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Grinspun, E., Hirani, A. N., Desbrun, M., and Schröder, P. 2003. Discrete shells. In ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 62--67. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Huang, H., Zhao, L., Yin, K., Qi, Y., Yu, Y., and Tong, X. 2011. Controllable hand deformation from sparse examples with rich details. In ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 73--82. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Irving, G., Teran, J., and Fedkiw, R. 2004. Invertible finite elements for robust simulation of large deformation. In ACM SIGGRAPH/Eurographics symposium on Computer Animation, 131--140. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. James, D. L., and Twigg, C. D. 2005. Skinning mesh animations. ACM Trans. Graph. 24, 3 (July), 399--407. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Kavan, L., Collins, S., Žára, J., and O'Sullivan, C. 2008. Geometric skinning with approximate dual quaternion blending. ACM Trans. Graph. 27, 4 (Nov.), 105:1--105:23. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Kim, B., Liu, Y., Llamas, I., and Rossignac, J. 2005. Flowfixer: using BFECC for fluid simulation. In Proceedings of the First Eurographics conference on Natural Phenomena, 51--56. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Kry, P. G., James, D. L., and Pai, D. K. 2002. Eigenskin: real time large deformation character skinning in hardware. In ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 153--159. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Lee, S.-H., Sifakis, E., and Terzopoulos, D. 2009. Comprehensive biomechanical modeling and simulation of the upper body. ACM Trans. Graph. 28, 4 (Sep), 99:1--99:17. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Lentine, M., Aanjaneya, M., and Fedkiw, R. 2011. Mass and momentum conservation for fluid simulation. In ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 91--100. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Levin, D. I. W., Litven, J., Jones, G. L., Sueda, S., and Pai, D. K. 2011. Eulerian solid simulation with contact. ACM Trans. Graph. 30, 4 (July), 36:1--36:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Lewis, J. P., Cordner, M., and Fong, N. 2000. Pose space deformation: a unified approach to shape interpolation and skeleton-driven deformation. In Proc. SIGGRAPH 2000, Annual Conference Series, 165--172. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Magnenat-Thalmann, N., Laperrire, R., Thalmann, D., and Montral, U. D. 1988. Joint-dependent local deformations for hand animation and object grasping. In In Proceedings on Graphics interface 88, 26--33. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Maillot, J., Yahia, H., and Verroust, A. 1993. Interactive texture mapping. In Proc. SIGGRAPH 1993, Annual Conference Series, 27--34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. McAdams, A., Zhu, Y., Selle, A., Empey, M., Tamstorf, R., Teran, J., and Sifakis, E. 2011. Efficient elasticity for character skinning with contact and collisions. ACM Trans. Graph. 30, 4 (July), 37:1--37:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Mohr, A., and Gleicher, M. 2003. Building efficient, accurate character skins from examples. ACM Trans. Graph. 22, 3 (July), 562--568. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Monagan, M. B., Geddes, K. O., Heal, K. M., Labahn, G., Vorkoetter, S. M., McCarron, J., and DeMarco, P. 2005. Maple 10 Programming Guide. Maplesoft, Waterloo ON, Canada.Google ScholarGoogle Scholar
  27. Park, S. I., and Hodgins, J. K. 2006. Capturing and animating skin deformation in human motion. ACM Trans. Graph. 25, 3 (July), 881--889. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Qin, H., and Terzopoulos, D. 1996. D-NURBS: A Physics-Based Framework for Geometric Design. IEEE Transactions on Visualization and Computer Graphics 2, 1, 85--96. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Rohmer, D., Popa, T., Cani, M.-P., Hahmann, S., and Sheffer, A. 2010. Animation wrinkling: augmenting coarse cloth simulations with realistic-looking wrinkles. ACM Trans. Graph. 29, 6 (Dec.), 157:1--157:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Selle, A., Fedkiw, R., Kim, B., Liu, Y., and Rossignac, J. 2008. An unconditionally stable maccormack method. J. Sci. Comput. 35, 2--3 (June), 350--371. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Sheffer, A., Praun, E., and Rose, K. 2006. Mesh parameterization methods and their applications. Found. Trends. Comput. Graph. Vis. 2, 2 (Jan.), 105--171. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Sifakis, E., Neverov, I., and Fedkiw, R. 2005. Automatic determination of facial muscle activations from sparse motion capture marker data. ACM Trans. Graph. 24, 3 (July), 417--425. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Sifakis, E., Hellrung, J., Teran, J., Oliker, A., and Cutting, C. 2009. Local flaps: A real-time finite element based solution to the plastic surgery defect puzzle. Studies in Health Technology and Informatics 142, 313--8.Google ScholarGoogle Scholar
  34. Stam, J. 1999. Stable fluids. In Proc. SIGGRAPH 1999, Annual Conference Series, 121--128. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Stam, J. 2003. Flows on surfaces of arbitrary topology. ACM Trans. Graph. 22, 3 (July), 724--731. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Sueda, S., Kaufman, A., and Pai, D. K. 2008. Musculotendon simulation for hand animation. ACM Trans. Graph. 27, 3 (Aug.), 83:1--83:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Sueda, S., Jones, G. L., Levin, D. I. W., and Pai, D. K. 2011. Large-scale dynamic simulation of highly constrained strands. ACM Trans. Graph. 30, 4 (July), 39:1--39:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Teran, J., Blemker, S., Hing, V. N. T., and Fedkiw, R. 2003. Finite volume methods for the simulation of skeletal muscle. In ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 68--74. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Terzopoulos, D., and Waters, K. 1990. Physically-based facial modelling, analysis, and animation. The Journal of Visualization and Computer Animation 1, 2 (Dec.), 73--80.Google ScholarGoogle ScholarCross RefCross Ref
  40. Volino, P., Magnenat-Thalmann, N., and Faure, F. 2009. A simple approach to nonlinear tensile stiffness for accurate cloth simulation. ACM Trans. Graph. 28, 4 (Sept.), 105:1--105:16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Wicke, M., Ritchie, D., Klingner, B. M., Burke, S., Shewchuk, J. R., and O'Brien, J. F. 2010. Dynamic local remeshing for elastoplastic simulation. ACM Trans. Graph. 29 (July), 49:1--49:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Wilhelms, J., and Gelder, A. V. 1997. Anatomically based modeling. In Proc. SIGGRAPH 1997, Annual Conference Series, 173--180. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Wu, Y., Kalra, P., and Thalmann, N. 1996. Simulation of static and dynamic wrinkles of skin. In Computer Animation'96. Proceedings, 90--97. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Thin skin elastodynamics

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 32, Issue 4
      July 2013
      1215 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/2461912
      Issue’s Table of Contents

      Copyright © 2013 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 21 July 2013
      Published in tog Volume 32, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader