skip to main content
research-article

Content-adaptive lenticular prints

Published:21 July 2013Publication History
Skip Abstract Section

Abstract

Lenticular prints are a popular medium for producing automultiscopic glasses-free 3D images. The light field emitted by such prints has a fixed spatial and angular resolution. We increase both perceived angular and spatial resolution by modifying the lenslet array to better match the content of a given light field. Our optimization algorithm analyzes the input light field and computes an optimal lenslet size, shape, and arrangement that best matches the input light field given a set of output parameters. The resulting emitted light field shows higher detail and smoother motion parallax compared to fixed-size lens arrays. We demonstrate our technique using rendered simulations and by 3D printing lens arrays, and we validate our approach in simulation with a user study.

Skip Supplemental Material Section

Supplemental Material

tp148.mp4

References

  1. Berkel, C. V. 1999. Image preparation for 3D-LCD. Proc. SPIE Stereoscopic Displays and Virtual Reality Systems 3639, 84--91.Google ScholarGoogle Scholar
  2. Chai, J.-X., Tong, X., Chan, S.-C., and Shum, H.-Y. 2000. Plenoptic sampling. In Proc. SIGGRAPH, 307--318. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Cossairt, O. S., Napoli, J., Hill, S. L., Dorval, R. K., and Favalora, G. E. 2007. Occlusion-capable multiview volumetric three-dimensional display. Applied Optics 46, 1244--1250.Google ScholarGoogle ScholarCross RefCross Ref
  4. Cox, W. R., Chen, T., and Hayes, D. J. 2001. Micro-optics fabrication by ink-jet printers. Optics and Photonics News 12, 6, 32--35.Google ScholarGoogle ScholarCross RefCross Ref
  5. Cruz-Campa, J. L., Okandan, M. O., Busse, M. L., and Nielson, G. N. 2010. Microlens rapid prototyping technique with capability for wide variation in lens diameter and focal length. Microelectronic Engineering 87, 11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Durand, F., Holzschuch, N., Soler, C., Chan, E., and Sillion, F. X. 2005. A frequency analysis of light transport. ACM Trans. Graph. (Proc. SIGGRAPH) 24, 1115--1126. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Fuchs, M., Raskar, R., Seidel, H.-P., and Lensch, H. P. A. 2008. Towards passive 6d reflectance field displays. ACM Trans. Graph. (Proc. SIGGRAPH) 27, 3, 58:1--58:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Gooch, A. A., Olsen, S. C., Tumblin, J., and Gooch, B. 2005. Color2gray: salience-preserving color removal. ACM Trans. Graph. (Proc. SIGGRAPH) 24, 3, 634--639. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Hachisuka, T., Jarosz, W., Weistroffer, R. P., Dale, K., Humphreys, G., Zwicker, M., and Jensen, H. W. 2008. Multidimensional adaptive sampling and reconstruction for ray tracing. ACM Trans. Graph. (Proc. SIGGRAPH) 27, 3, 33:1--33:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Hardy, G. H., and Ramanujan, S. 1918. Asymptotic formulae in combinatorial analysis. In Proc. London Math. Soc., vol. 17, 75--115.Google ScholarGoogle ScholarCross RefCross Ref
  11. Holroyd, M., Baran, I., Lawrence, J., and Matusik, W. 2011. Computing and fabricating multilayer models. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 30, 6, 187:1--187:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Isono, H., Yasuda, M., and Sasazawa, H. 1993. Autostereoscopic 3-D display using LCD-generated parallax barrier. Electronics and Communications in Japan 76, 7, 77--84.Google ScholarGoogle Scholar
  13. Ives, F., 1903. Parallax stereogram and process for making same. U.S. Patent No. 725,567.Google ScholarGoogle Scholar
  14. Jain, A., and Konrad, J. 2007. Crosstalk in automultiscopic 3-D displays: blessing in disguise? Proc. SPIE Stereoscopic Displays and Virtual Reality Systems 6490, 649012.Google ScholarGoogle ScholarCross RefCross Ref
  15. Jang, J.-S., and Javidi, B. 2002. Improved viewing resolution of three-dimensional integral imaging by use of nonstationary micro-optics. Optics Letters 27, 5, 324--326.Google ScholarGoogle ScholarCross RefCross Ref
  16. Jang, J.-S., and Javidi, B. 2003. Large depth-of-focus time-multiplexed three-dimensional integral imaging by use of lenslets with nonuniform focal lengths and aperture sizes. Optics Letters 28, 1924--1926.Google ScholarGoogle ScholarCross RefCross Ref
  17. Johnson, R. B., and Jacobsen, G. A. 2005. Advances in lenticular lens arrays for visual display. In Proc. SPIE 5874.Google ScholarGoogle Scholar
  18. Jones, A., McDowall, I., Yamada, H., Bolas, M., and Debevec, P. 2007. Rendering for an interactive 360 light field display. ACM Trans. Graph. 26, 3, 40:1--40:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Kao, Y.-Y., Huang, Y.-P., Yang, K.-X., Chao, P. C.-P., Tsai, C.-C., and Mo, C.-N. 2009. An auto-stereoscopic 3D display using tunable liquid crystal lens array that mimics effects of GRIN lenticular lens array. SID Symposium Digest of Technical Papers 40, 111--114.Google ScholarGoogle ScholarCross RefCross Ref
  20. Kim, Y., Park, J.-H., Min, S.-W., Jung, S., Choi, H., and Lee, B. 2005. Wide-viewing-angle integral three-dimensional imaging system by curving a screen and a lens array. Applied Optics 44, 546--552.Google ScholarGoogle ScholarCross RefCross Ref
  21. Kim, Y., Kim, J., Kang, J.-M., Jung, J.-H., Choi, H., and Lee, B. 2007. Point light source integral imaging with improved resolution and viewing angle by the use of electrically movable pinhole array. Optics Express 15, 26, 18253--18267.Google ScholarGoogle ScholarCross RefCross Ref
  22. Kim, Y., Hong, K., and Lee, B. 2010. Recent researches based on integral imaging display method. 3D Research 1, 17--27. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Kim, S.-C., Kim, C.-K., and Kim, E.-S. 2011. Depth-of-focus and resolution-enhanced three-dimensional integral imaging with non-uniform lenslets and intermediate-view reconstruction technique. 3D Research 2, 2, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Kim, C., Zimmer, H., Pritch, Y., Sorkine-Hornung, A., and Gross, M. 2013. Scene reconstruction from high spatio-angular resolution light fields. To appear ACM Trans. Graph. (Proc. SIGGRAPH). Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Kweon, G.-I., and Kim, C.-H. 2007. Aspherical lens design by using a numerical analysis. Journal of the Korean Physical Society 51, 1, 93--103.Google ScholarGoogle ScholarCross RefCross Ref
  26. Lanman, D., Hirsch, M., Kim, Y., and Raskar, R. 2010. Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization. ACM Trans. Graph. (Proc. SIGGRAPH) 29, 6, 163:1--163:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Lanman, D., Wetzstein, G., Hirsch, M., Heidrich, W., and Raskar, R. 2011. Polarization fields: dynamic light field display using multi-layer LCDs. ACM Trans. Graph. (Proc. SIGGRAPH) 30, 6 (Dec.), 186:1--186:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Lehtinen, J., Aila, T., Chen, J., Laine, S., and Durand, F. 2011. Temporal light field reconstruction for rendering distribution effects. ACM Trans. Graph. (Proc. SIGGRAPH) 30, 4, 55:1--55:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Lippmann, G. M. 1908. La photographie integrale. Comptes-Rendus 146, 446--451.Google ScholarGoogle Scholar
  30. Lueder, E. 2012. 3D Displays. Wiley.Google ScholarGoogle Scholar
  31. Nashel, A., and Fuchs, H. 2009. Random Hole Display: A non-uniform barrier autostereoscopic display. In 3DTV Conference: The True Vision -- Capture, Transmission and Display of 3D Video, 1--4.Google ScholarGoogle Scholar
  32. Papas, M., Jarosz, W., Jakob, W., Rusinkiewicz, S., Matusik, W., and Weyrich, T. 2011. Goal-based caustics. Computer Graphics Forum 30, 2, 503--511.Google ScholarGoogle ScholarCross RefCross Ref
  33. Papas, M., Houit, T., Nowrouzezahrai, D., Gross, M., and Jarosz, W. 2012. The magic lens: Refractive steganography. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 31, 6, 186:1--186:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Park, J.-H., Kim, J., Kim, Y., and Lee, B. 2005. Resolution-enhanced three-dimension/two-dimension convertible display based on integral imaging. Optics Express 13, 1875--1884.Google ScholarGoogle ScholarCross RefCross Ref
  35. Perlin, K., Paxia, S., and Kollin, J. S. 2000. An autostereoscopic display. In Proc. of SIGGRAPH, 319--326. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Peterka, T., Kooima, R. L., Sandin, D. J., Johnson, A., Leigh, J., and DeFanti, T. A. 2008. Advances in the dynallax solid-state dynamic parallax barrier autostereoscopic visualization display system. IEEE T. VIS. COMPUT. GR. 14, 3, 487--499. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Ramachandra, V., Hirakawa, K., Zwicker, M., and Nguyen, T. 2011. Spatio-angular prefiltering for multiview 3D displays. IEEE T. VIS. COMPUT. GR. 17, 5, 642--654. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Said, A., and Talvala, E.-V. 2009. Spatial-angular analysis of displays for reproduction of light fields. Proc. SPIE 7237.Google ScholarGoogle Scholar
  39. Sajadi, B., Gopi, M., and Majumder, A. 2012. Edge-guided resolution enhancement in projectors via optical pixel sharing. ACM Trans. Graph. 31, 4 (July), 79:1--79:122. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Schnars, U., and Jüpter, W. 2005. Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques. Springer.Google ScholarGoogle Scholar
  41. Smith, W. J. 2007. Modern optical engineering. SPIE Press.Google ScholarGoogle Scholar
  42. Sun, H.-b., and Kawata, S., 2004. Two-photon photopolymerization and 3d lithographic microfabrication.Google ScholarGoogle Scholar
  43. Takahashi, H., Fujinami, H., and Yamada, K. 2006. Wide-viewing-angle three-dimensional display system using hoe lens array. Proc. SPIE 6055, 60551C-1--60551C-9.Google ScholarGoogle Scholar
  44. Ueda, K., Koike, T., Takahashi, K., and Naemura, T. 2008. Adaptive integral photography imaging with variable-focus lens array. Proc. SPIE 6803.Google ScholarGoogle Scholar
  45. Wetzstein, G., Lanman, D., Heidrich, W., and Raskar, R. 2011. Layered 3D: Tomographic image synthesis for attenuation-based light field and high dynamic range displays. ACM Trans. Graph. (Proc. SIGGRAPH) 30, 4, 95:1--95:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Wetzstein, G., Lanman, D., Hirsch, M., and Raskar, R. 2012. Tensor displays: Compressive light field synthesis using multilayer displays with directional backlighting. ACM Trans. Graph. (Proc. SIGGRAPH) 31, 4, 80:1--80:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Willis, K., Brockmeyer, E., Hudson, S., and Poupyrev, I. 2012. Printed optics: 3d printing of embedded optical elements for interactive devices. In ACM Symposium on User Interface Software and Technology, 589--598. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Wu, M.-H., Park, C., and Whitesides, G. 2002. Fabrication of arrays of microlenses with controlled profiles using gray-scale microlens projection photolithography. Langmuir 18, 24.Google ScholarGoogle ScholarCross RefCross Ref
  49. Zebra Imaging, 2013. ZScape® digital holographic prints. http://www.zebraimaging.com.Google ScholarGoogle Scholar
  50. Zwicker, W., Matusik, W., Dur, F., Pfister, H., Zwicker, M., Matusik, W., Durand, F., and Pfister, H. 2006. Antialiasing for automultiscopic 3D displays. In Eurographics Symposium on Rendering, 73--82. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Zwicker, M., Vetro, A., Yea, S., Matusik, W., Pfister, H., and Durand, F. 2007. Resampling, antialiasing, and compression in multiview 3-D displays. IEEE Signal Processing Magazine 24, 6 (Nov.), 88--96.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Content-adaptive lenticular prints

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 32, Issue 4
      July 2013
      1215 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/2461912
      Issue’s Table of Contents

      Copyright © 2013 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 21 July 2013
      Published in tog Volume 32, Issue 4

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader