Abstract
Lenticular prints are a popular medium for producing automultiscopic glasses-free 3D images. The light field emitted by such prints has a fixed spatial and angular resolution. We increase both perceived angular and spatial resolution by modifying the lenslet array to better match the content of a given light field. Our optimization algorithm analyzes the input light field and computes an optimal lenslet size, shape, and arrangement that best matches the input light field given a set of output parameters. The resulting emitted light field shows higher detail and smoother motion parallax compared to fixed-size lens arrays. We demonstrate our technique using rendered simulations and by 3D printing lens arrays, and we validate our approach in simulation with a user study.
Supplemental Material
Available for Download
Supplemental material.
- Berkel, C. V. 1999. Image preparation for 3D-LCD. Proc. SPIE Stereoscopic Displays and Virtual Reality Systems 3639, 84--91.Google Scholar
- Chai, J.-X., Tong, X., Chan, S.-C., and Shum, H.-Y. 2000. Plenoptic sampling. In Proc. SIGGRAPH, 307--318. Google Scholar
Digital Library
- Cossairt, O. S., Napoli, J., Hill, S. L., Dorval, R. K., and Favalora, G. E. 2007. Occlusion-capable multiview volumetric three-dimensional display. Applied Optics 46, 1244--1250.Google Scholar
Cross Ref
- Cox, W. R., Chen, T., and Hayes, D. J. 2001. Micro-optics fabrication by ink-jet printers. Optics and Photonics News 12, 6, 32--35.Google Scholar
Cross Ref
- Cruz-Campa, J. L., Okandan, M. O., Busse, M. L., and Nielson, G. N. 2010. Microlens rapid prototyping technique with capability for wide variation in lens diameter and focal length. Microelectronic Engineering 87, 11. Google Scholar
Digital Library
- Durand, F., Holzschuch, N., Soler, C., Chan, E., and Sillion, F. X. 2005. A frequency analysis of light transport. ACM Trans. Graph. (Proc. SIGGRAPH) 24, 1115--1126. Google Scholar
Digital Library
- Fuchs, M., Raskar, R., Seidel, H.-P., and Lensch, H. P. A. 2008. Towards passive 6d reflectance field displays. ACM Trans. Graph. (Proc. SIGGRAPH) 27, 3, 58:1--58:8. Google Scholar
Digital Library
- Gooch, A. A., Olsen, S. C., Tumblin, J., and Gooch, B. 2005. Color2gray: salience-preserving color removal. ACM Trans. Graph. (Proc. SIGGRAPH) 24, 3, 634--639. Google Scholar
Digital Library
- Hachisuka, T., Jarosz, W., Weistroffer, R. P., Dale, K., Humphreys, G., Zwicker, M., and Jensen, H. W. 2008. Multidimensional adaptive sampling and reconstruction for ray tracing. ACM Trans. Graph. (Proc. SIGGRAPH) 27, 3, 33:1--33:10. Google Scholar
Digital Library
- Hardy, G. H., and Ramanujan, S. 1918. Asymptotic formulae in combinatorial analysis. In Proc. London Math. Soc., vol. 17, 75--115.Google Scholar
Cross Ref
- Holroyd, M., Baran, I., Lawrence, J., and Matusik, W. 2011. Computing and fabricating multilayer models. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 30, 6, 187:1--187:8. Google Scholar
Digital Library
- Isono, H., Yasuda, M., and Sasazawa, H. 1993. Autostereoscopic 3-D display using LCD-generated parallax barrier. Electronics and Communications in Japan 76, 7, 77--84.Google Scholar
- Ives, F., 1903. Parallax stereogram and process for making same. U.S. Patent No. 725,567.Google Scholar
- Jain, A., and Konrad, J. 2007. Crosstalk in automultiscopic 3-D displays: blessing in disguise? Proc. SPIE Stereoscopic Displays and Virtual Reality Systems 6490, 649012.Google Scholar
Cross Ref
- Jang, J.-S., and Javidi, B. 2002. Improved viewing resolution of three-dimensional integral imaging by use of nonstationary micro-optics. Optics Letters 27, 5, 324--326.Google Scholar
Cross Ref
- Jang, J.-S., and Javidi, B. 2003. Large depth-of-focus time-multiplexed three-dimensional integral imaging by use of lenslets with nonuniform focal lengths and aperture sizes. Optics Letters 28, 1924--1926.Google Scholar
Cross Ref
- Johnson, R. B., and Jacobsen, G. A. 2005. Advances in lenticular lens arrays for visual display. In Proc. SPIE 5874.Google Scholar
- Jones, A., McDowall, I., Yamada, H., Bolas, M., and Debevec, P. 2007. Rendering for an interactive 360 light field display. ACM Trans. Graph. 26, 3, 40:1--40:10. Google Scholar
Digital Library
- Kao, Y.-Y., Huang, Y.-P., Yang, K.-X., Chao, P. C.-P., Tsai, C.-C., and Mo, C.-N. 2009. An auto-stereoscopic 3D display using tunable liquid crystal lens array that mimics effects of GRIN lenticular lens array. SID Symposium Digest of Technical Papers 40, 111--114.Google Scholar
Cross Ref
- Kim, Y., Park, J.-H., Min, S.-W., Jung, S., Choi, H., and Lee, B. 2005. Wide-viewing-angle integral three-dimensional imaging system by curving a screen and a lens array. Applied Optics 44, 546--552.Google Scholar
Cross Ref
- Kim, Y., Kim, J., Kang, J.-M., Jung, J.-H., Choi, H., and Lee, B. 2007. Point light source integral imaging with improved resolution and viewing angle by the use of electrically movable pinhole array. Optics Express 15, 26, 18253--18267.Google Scholar
Cross Ref
- Kim, Y., Hong, K., and Lee, B. 2010. Recent researches based on integral imaging display method. 3D Research 1, 17--27. Google Scholar
Digital Library
- Kim, S.-C., Kim, C.-K., and Kim, E.-S. 2011. Depth-of-focus and resolution-enhanced three-dimensional integral imaging with non-uniform lenslets and intermediate-view reconstruction technique. 3D Research 2, 2, 6. Google Scholar
Digital Library
- Kim, C., Zimmer, H., Pritch, Y., Sorkine-Hornung, A., and Gross, M. 2013. Scene reconstruction from high spatio-angular resolution light fields. To appear ACM Trans. Graph. (Proc. SIGGRAPH). Google Scholar
Digital Library
- Kweon, G.-I., and Kim, C.-H. 2007. Aspherical lens design by using a numerical analysis. Journal of the Korean Physical Society 51, 1, 93--103.Google Scholar
Cross Ref
- Lanman, D., Hirsch, M., Kim, Y., and Raskar, R. 2010. Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization. ACM Trans. Graph. (Proc. SIGGRAPH) 29, 6, 163:1--163:10. Google Scholar
Digital Library
- Lanman, D., Wetzstein, G., Hirsch, M., Heidrich, W., and Raskar, R. 2011. Polarization fields: dynamic light field display using multi-layer LCDs. ACM Trans. Graph. (Proc. SIGGRAPH) 30, 6 (Dec.), 186:1--186:10. Google Scholar
Digital Library
- Lehtinen, J., Aila, T., Chen, J., Laine, S., and Durand, F. 2011. Temporal light field reconstruction for rendering distribution effects. ACM Trans. Graph. (Proc. SIGGRAPH) 30, 4, 55:1--55:12. Google Scholar
Digital Library
- Lippmann, G. M. 1908. La photographie integrale. Comptes-Rendus 146, 446--451.Google Scholar
- Lueder, E. 2012. 3D Displays. Wiley.Google Scholar
- Nashel, A., and Fuchs, H. 2009. Random Hole Display: A non-uniform barrier autostereoscopic display. In 3DTV Conference: The True Vision -- Capture, Transmission and Display of 3D Video, 1--4.Google Scholar
- Papas, M., Jarosz, W., Jakob, W., Rusinkiewicz, S., Matusik, W., and Weyrich, T. 2011. Goal-based caustics. Computer Graphics Forum 30, 2, 503--511.Google Scholar
Cross Ref
- Papas, M., Houit, T., Nowrouzezahrai, D., Gross, M., and Jarosz, W. 2012. The magic lens: Refractive steganography. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 31, 6, 186:1--186:10. Google Scholar
Digital Library
- Park, J.-H., Kim, J., Kim, Y., and Lee, B. 2005. Resolution-enhanced three-dimension/two-dimension convertible display based on integral imaging. Optics Express 13, 1875--1884.Google Scholar
Cross Ref
- Perlin, K., Paxia, S., and Kollin, J. S. 2000. An autostereoscopic display. In Proc. of SIGGRAPH, 319--326. Google Scholar
Digital Library
- Peterka, T., Kooima, R. L., Sandin, D. J., Johnson, A., Leigh, J., and DeFanti, T. A. 2008. Advances in the dynallax solid-state dynamic parallax barrier autostereoscopic visualization display system. IEEE T. VIS. COMPUT. GR. 14, 3, 487--499. Google Scholar
Digital Library
- Ramachandra, V., Hirakawa, K., Zwicker, M., and Nguyen, T. 2011. Spatio-angular prefiltering for multiview 3D displays. IEEE T. VIS. COMPUT. GR. 17, 5, 642--654. Google Scholar
Digital Library
- Said, A., and Talvala, E.-V. 2009. Spatial-angular analysis of displays for reproduction of light fields. Proc. SPIE 7237.Google Scholar
- Sajadi, B., Gopi, M., and Majumder, A. 2012. Edge-guided resolution enhancement in projectors via optical pixel sharing. ACM Trans. Graph. 31, 4 (July), 79:1--79:122. Google Scholar
Digital Library
- Schnars, U., and Jüpter, W. 2005. Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques. Springer.Google Scholar
- Smith, W. J. 2007. Modern optical engineering. SPIE Press.Google Scholar
- Sun, H.-b., and Kawata, S., 2004. Two-photon photopolymerization and 3d lithographic microfabrication.Google Scholar
- Takahashi, H., Fujinami, H., and Yamada, K. 2006. Wide-viewing-angle three-dimensional display system using hoe lens array. Proc. SPIE 6055, 60551C-1--60551C-9.Google Scholar
- Ueda, K., Koike, T., Takahashi, K., and Naemura, T. 2008. Adaptive integral photography imaging with variable-focus lens array. Proc. SPIE 6803.Google Scholar
- Wetzstein, G., Lanman, D., Heidrich, W., and Raskar, R. 2011. Layered 3D: Tomographic image synthesis for attenuation-based light field and high dynamic range displays. ACM Trans. Graph. (Proc. SIGGRAPH) 30, 4, 95:1--95:12. Google Scholar
Digital Library
- Wetzstein, G., Lanman, D., Hirsch, M., and Raskar, R. 2012. Tensor displays: Compressive light field synthesis using multilayer displays with directional backlighting. ACM Trans. Graph. (Proc. SIGGRAPH) 31, 4, 80:1--80:11. Google Scholar
Digital Library
- Willis, K., Brockmeyer, E., Hudson, S., and Poupyrev, I. 2012. Printed optics: 3d printing of embedded optical elements for interactive devices. In ACM Symposium on User Interface Software and Technology, 589--598. Google Scholar
Digital Library
- Wu, M.-H., Park, C., and Whitesides, G. 2002. Fabrication of arrays of microlenses with controlled profiles using gray-scale microlens projection photolithography. Langmuir 18, 24.Google Scholar
Cross Ref
- Zebra Imaging, 2013. ZScape® digital holographic prints. http://www.zebraimaging.com.Google Scholar
- Zwicker, W., Matusik, W., Dur, F., Pfister, H., Zwicker, M., Matusik, W., Durand, F., and Pfister, H. 2006. Antialiasing for automultiscopic 3D displays. In Eurographics Symposium on Rendering, 73--82. Google Scholar
Digital Library
- Zwicker, M., Vetro, A., Yea, S., Matusik, W., Pfister, H., and Durand, F. 2007. Resampling, antialiasing, and compression in multiview 3-D displays. IEEE Signal Processing Magazine 24, 6 (Nov.), 88--96.Google Scholar
Cross Ref
Index Terms
Content-adaptive lenticular prints
Recommendations
Fabrication of Edible lenticular lens
SIGGRAPH '23: ACM SIGGRAPH 2023 PostersLenticular lenses exhibit the color changing effect depending on the viewing angle and the vanishing effect in certain directions. In this study, we propose two fabrication methods for edible lenticular lenses. One is the mold forming method, and ...
LightTouch: Passive Gadgets for Extending Interactions on Capacitive Touchscreens by Automating Touch Inputs
UIST '20 Adjunct: Adjunct Proceedings of the 33rd Annual ACM Symposium on User Interface Software and TechnologyWe present LightTouch, a passive gadget to enhance touch interactions on unmodified capacitive touchscreens. It simulates finger operations such as tapping, swiping, or multi-touch gestures using conductive materials and photoresistors embedded inside ...
PrintPut: Resistive and Capacitive Input Widgets for Interactive 3D Prints
Human-Computer Interaction – INTERACT 2015AbstractWe introduce PrintPut, a method for 3D printing that embeds interactivity directly into printed objects. PrintPut uses conductive filament to offer an assortment of sensors that an industrial designer can easily incorporate into their 3D designs, ...





Comments