skip to main content
research-article

Fourier analysis of stochastic sampling strategies for assessing bias and variance in integration

Published:21 July 2013Publication History
Skip Abstract Section

Abstract

Each pixel in a photorealistic, computer generated picture is calculated by approximately integrating all the light arriving at the pixel, from the virtual scene. A common strategy to calculate these high-dimensional integrals is to average the estimates at stochastically sampled locations. The strategy with which the sampled locations are chosen is of utmost importance in deciding the quality of the approximation, and hence rendered image.

We derive connections between the spectral properties of stochastic sampling patterns and the first and second order statistics of estimates of integration using the samples. Our equations provide insight into the assessment of stochastic sampling strategies for integration. We show that the amplitude of the expected Fourier spectrum of sampling patterns is a useful indicator of the bias when used in numerical integration. We deduce that estimator variance is directly dependent on the variance of the sampling spectrum over multiple realizations of the sampling pattern. We then analyse Gaussian jittered sampling, a simple variant of jittered sampling, that allows a smooth trade-off of bias for variance in uniform (regular grid) sampling. We verify our predictions using spectral measurement, quantitative integration experiments and qualitative comparisons of rendered images.

Skip Supplemental Material Section

Supplemental Material

tp163.mp4

References

  1. Amidror, I., Hersch, R. D., and Ostromoukhov, V. 1994. Spectral analysis and minimization of moiré patterns in color separation. J. Electron. Imaging 3, 295--317.Google ScholarGoogle ScholarCross RefCross Ref
  2. Arvo, J. 2001. Stratified sampling of 2-manifolds. SIGGRAPH 2001 Course Notes 29, 2.Google ScholarGoogle Scholar
  3. Balakrishnan, A. 1962. On the problem of time jitter in sampling. Information Theory, IRE Transactions on 8, 3 (april), 226--236.Google ScholarGoogle ScholarCross RefCross Ref
  4. Bartlett, M. S. 1964. The spectral analysis of two-dimensional point processes. Biometrika 51, 299--311.Google ScholarGoogle ScholarCross RefCross Ref
  5. Belcour, L., Soler, C., Subr, K., Holzschuch, N., and Durand, F. 2012. 5d covariance tracing for efficient defocus and motion blur. Tech. Rep. MIT-CSAIL-TR-2012-034, MIT, MA, November 2012.Google ScholarGoogle Scholar
  6. Bowers, J., Wang, R., Wei, L.-Y., and Maletz, D. 2010. Parallel poisson disk sampling with spectrum analysis on surfaces. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 29, 6, 166:1--166:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Brémaud, P., Massoulié, L., and Ridolfi, A. 2003. Power spectra of random spike fields & related processes. Journal of Applied Probability 2002, 1116--1146.Google ScholarGoogle Scholar
  8. Cook, R. L. 1986. Stochastic sampling in computer graphics. ACM Transactions on Graphics 5, 1 (Jan.), 51--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Dippe, M. A. Z., and Wold, E. H. 1985. Antialiasing through stochastic sampling. In ACM SIGGRAPH '85), B. A. Barsky, Ed., 69--78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Durand, F., Holzschuch, N., Soler, C., Chan, E., and Sillion, F. X. 2005. A frequency analysis of light transport. ACM Trans. Graph. (Proc. SIGGRAPH) 24, 3 (July), 1115--1126. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Durand, F. 2011. A frequency analysis of Monte-Carlo and other numerical integration schemes. Tech. Rep. MIT-CSAIL-TR-2011-052, CSAIL, MIT, MA.Google ScholarGoogle Scholar
  12. Egan, K., Tseng, Y.-T., Holzschuch, N., Durand, F., and Ramamoorthi, R. 2009. Frequency analysis and sheared reconstruction for rendering motion blur. ACM Trans. Graph. 28, 3 (July), 93:1--93:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Fienup, J. R. 1997. Invariant error metrics for image reconstruction. Appl. Opt. 36, 32 (Nov), 8352--8357.Google ScholarGoogle ScholarCross RefCross Ref
  14. Gallaher, L. J. 1973. A multidimensional Monte Carlo quadrature with adaptive stratified sampling. Commun. ACM 16, 1 (Jan.), 49--50. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Gamito, M. N., and Maddock, S. C. 2009. Accurate multidimensional Poisson-disk sampling. ACM Transactions on Graphics 29, 1 (Dec.), 8:1--8:19. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Hachisuka, T., Jarosz, W., Weistroffer, R. P., Dale, K., Humphreys, G., Zwicker, M., and Jensen, H. W. 2008. Multidimensional adaptive sampling and reconstruction for ray tracing. ACM Trans. Graph. (Proc. SIGGRAPH) 27, 3 (Aug.), 33:1--33:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Keller, A., and Heidrich, W. 2001. Interleaved sampling. In Rendering Techniques, 269--276. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Keller, A., Heinrich, S., and Niederreiter, H. 2006. Monte Carlo and Quasi-Monte Carlo methods. Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Keller, A. 2002. Stratification by Rank-1-Lattices. Interner Bericht. Universität Kaiserslautern, Fachbereich Informatik.Google ScholarGoogle Scholar
  20. Kollig, T., and Keller, A. 2002. Efficient multidimensional sampling. Comput. Graph. Forum (Proc. Eurographics) 21, 3, 557--557.Google ScholarGoogle ScholarCross RefCross Ref
  21. Křivánek, J., and Colbert, M. 2008. Real-time shading with filtered importance sampling. Computer Graphics Forum (Proc. Eurographics Symposium on Rendering) 27, 4, 1147--1154. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Lagae, A., and Dutré, P. 2008. A comparison of methods for generating poisson disk distributions. Comput. Graph. Forum 27, 1, 114--129.Google ScholarGoogle ScholarCross RefCross Ref
  23. Larcher, G., and Pillichshammer, F. 2001. Walsh series analysis of the L2-discrepancy of symmetrisized point sets. Monatshefte für Mathematik 132, 1, 1--18.Google ScholarGoogle ScholarCross RefCross Ref
  24. Lehtinen, J., Aila, T., Laine, S., and Durand, F. 2012. Reconstructing the indirect light field for global illumination. ACM Trans. Graph. (Proc. SIGGRAPH) 31, 4 (July), 51:1--51:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Leneman, O. A. 1966. Random sampling of random processes: Impulse processes. Information and Control 9, 4, 347--363.Google ScholarGoogle ScholarCross RefCross Ref
  26. Luchini, P. 1994. Fourier analysis of numerical integration formulae. Computer Physics Communications 83, 23, 227--235.Google ScholarGoogle ScholarCross RefCross Ref
  27. Machiraju, R., Swan, E., and Yagel, R. 1995. Spatial domain characterization and control of reconstruction errors. In Proceedings of the 6th Eurographics Workshop on Rendering, 33--44.Google ScholarGoogle Scholar
  28. Matérn, B. 1960. Spatial variation. Meddelanden fran Statens Skogsforskningsinstitut 49, 1--144.Google ScholarGoogle Scholar
  29. Matérn, B. 1986. Spatial Variation, 2nd ed. Springer Verlag.Google ScholarGoogle Scholar
  30. Mitchell, D. P., and Netravali, A. N. 1988. Reconstruction filters in computer-graphics. SIGGRAPH Comput. Graph. 22 (June), 221--228. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Mitchell, D. P. 1987. Generating antialiased images at low sampling densities. M. C. Stone, Ed., vol. 21, 65--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Mitchell, D. P. 1991. Spectrally optimal sampling for distribution ray tracing. T. W. Sederberg, Ed., vol. 25, 157--164. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Mitchell, D. P. 1992. Ray Tracing and Irregularities of Distribution. In Third Eurographics Workshop on Rendering, 61--69.Google ScholarGoogle Scholar
  34. Mitchell, D. 1996. Consequences of stratified sampling in graphics. In Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, ACM, 277--280. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Neyman, J. 1934. On the two different aspects of the representative method: the method of stratified sampling and the method of purposive selection. Journal of the Royal Statistical Society 97, 4, 558--625.Google ScholarGoogle ScholarCross RefCross Ref
  36. Niederreiter, H. 1992. Quasi-Monte Carlo Methods. John Wiley & Sons, Ltd.Google ScholarGoogle Scholar
  37. Ostromoukhov, V. 2007. Sampling with polyominoes. ACM Trans. Graph. (Proc. SIGGRAPH) 26, 3 (July), 78:1--78:6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Ouellette, M. J., and Fiume, E. 2001. On numerical solutions to one-dimensional integration problems with applications to linear light sources. ACM Trans. Graph. 20, 4 (Oct.), 232--279. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Öztireli, A. C., and Gross, M. 2012. Analysis and synthesis of point distributions based on pair correlation. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 31, 6 (Nov.), 170:1--170:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Pharr, M., and Humphreys, G. 2010. Physically Based Rendering, Second Edition: From Theory To Implementation, 2nd ed. Morgan Kaufmann Publishers Inc. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Ramamoorthi, R., and Hanrahan, P. 2004. A signal-processing framework for reflection. ACM Trans. Graph. 23, 4 (Oct.), 1004--1042. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Ramamoorthi, R., Anderson, J., Meyer, M., and Nowrouzezahrai, D. 2012. A theory of monte carlo visibility sampling. ACM Trans. Graph. 31, 5 (Sept.), 121:1--121:16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Ripley, B. 1977. Modelling spatial patterns. J. Roy. Statist. Soc. B 39, 172--212.Google ScholarGoogle Scholar
  44. Schlömer, T., and Deussen, O. 2011. Accurate spectral analysis of two-dimensional point sets. Journal of Graphics, GPU, and Game Tools 15, 3, 152--160.Google ScholarGoogle ScholarCross RefCross Ref
  45. Shirley, P. 1991. Discrepancy as a quality measure for sampling distributions. In Proc. Eurographics '91, 183--194.Google ScholarGoogle Scholar
  46. Soler, C., Subr, K., Durand, F., Holzschuch, N., and Sillion, F. 2009. Fourier depth of field. ACM Trans. Graph. 28, 2 (May), 18:1--18:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Subr, K., and Arvo, J. 2007. Statistical hypothesis testing for assessing Monte Carlo estimators: Applications to image synthesis. In Pacific Graphics 2007, 106--115. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Wei, L.-Y., and Wang, R. 2011. Differential domain analysis for non-uniform sampling. ACM Trans. Graph. (Proc. SIGGRAPH) 30, 4, 50:1--50:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Zhou, Y., Huang, H., Wei, L.-Y., and Wang, R. 2012. Point sampling with general noise spectrum. ACM Trans. Graph. (Proc. SIGGRAPH) 31, 4 (July), 76:1--76:11. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Fourier analysis of stochastic sampling strategies for assessing bias and variance in integration

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 32, Issue 4
          July 2013
          1215 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/2461912
          Issue’s Table of Contents

          Copyright © 2013 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 21 July 2013
          Published in tog Volume 32, Issue 4

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader