skip to main content
research-article

Embedded thin shells for wrinkle simulation

Published:21 July 2013Publication History
Skip Abstract Section

Abstract

We present a new technique for simulating high resolution surface wrinkling deformations of composite objects consisting of a soft interior and a harder skin. We combine high resolution thin shells with coarse finite element lattices and define frequency based constraints that allow the formation of wrinkles with properties matching those predicted by the physical parameters of the composite object. Our two-way coupled model produces the expected wrinkling behavior without the computational expense of a large number of volumetric elements to model deformations under the surface. We use C1 quadratic shape functions for the interior deformations, allowing very coarse resolutions to model the overall global deformation efficiently, while avoiding visual artifacts of wrinkling at discretization boundaries. We demonstrate that our model produces wrinkle wavelengths that match both theoretical predictions and high resolution volumetric simulations. We also show example applications in simulating wrinkles on passive objects, such as furniture, and for wrinkles on faces in character animation.

Skip Supplemental Material Section

Supplemental Material

tp071.mp4

References

  1. Baraff, D., and Witkin, A. 1998. Large steps in cloth simulation. In SIGGRAPH '98, 43--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Bergou, M., Wardetzky, M., Harmon, D., Zorin, D., and Grinspun, E. 2006. A quadratic bending model for inextensible surfaces. In Symposium on Geometry Processing, 227--230. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bergou, M., Mathur, S., Wardetzky, M., and Grinspun, E. 2007. Tracks: toward directable thin shells. ACM Trans. Graph. 26, 3 (July), 50:1--50:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Blinn, J. F. 1978. Simulation of wrinkled surfaces. SIGGRAPH Comput. Graph. 12, 3 (Aug.), 286--292. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bridson, R., Fedkiw, R., and Anderson, J. 2002. Robust treatment of collisions, contact and friction for cloth animation. In SIGGRAPH '02, 594--603. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Bridson, R., Marino, S., and Fedkiw, R. 2003. Simulation of clothing with folds and wrinkles. In Symposium on Computer Animation, SCA '03, 28--36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Capell, S., Green, S., Curless, B., Duchamp, T., and Popović, Z. 2002. Interactive skeleton-driven dynamic deformations. ACM Trans. Graph. 21, 3, 586--593. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Danielson, D. 1973. Human skin as an elastic membrane. Journal of Biomechanics 6, 5, 539--546.Google ScholarGoogle ScholarCross RefCross Ref
  9. Faloutsos, P., van de Panne, M., and Terzopoulos, D. 1997. Dynamic free-form deformations for animation synthesis. IEEE Trans. on Vis. and Comp. Graph. 3, 3, 201--214. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Genzer, J., and Groenewold, J. 2006. Soft matter with hard skin: From skin wrinkles to templating and material characterization. Soft Matter 2, 4, 310--323.Google ScholarGoogle ScholarCross RefCross Ref
  11. Grinspun, E., Hirani, A. N., Desbrun, M., and Schröder, P. 2003. Discrete shells. In Symp. on Comp. Anim., 62--67. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Irving, G., Teran, J., and Fedkiw, R. 2004. Invertible finite elements for robust simulation of large deformation. In Symp. on Comp. Anim., Eurographics Association, 131--140. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Irving, G., Teran, J., and Fedkiw, R. 2006. Tetrahedral and hexahedral invertible finite elements. Graph. Mod. 68, 2, 66--89. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Jimenez, J., Echevarria, J. I., Oat, C., and Gutierrez, D. 2011. GPU Pro 2. AK Peters Ltd., ch. Practical and Realistic Facial Wrinkles Animation, 15--27.Google ScholarGoogle Scholar
  15. Kavan, L., Gerszewski, D., Bargteil, A. W., and Sloan, P.-P. 2011. Physics-inspired upsampling for cloth simulation in games. ACM Trans. Graph. 30, 4 (July), 93:1--93:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Kelley, C. 1987. Solving Nonlinear Equations with Newton's Method. Fundamentals of Algorithms. Society for Industrial and Applied Mathematics.Google ScholarGoogle Scholar
  17. Larboulette, C., and Cani, M.-P. 2004. Real-time dynamic wrinkles. In Computer Graphics International, 522--525. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Lévy, B., and Liu, Y. 2010. Lp centroidal Voronoi tessellation and its applications. ACM Trans. Graph. 29, 4, 119:1--119:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Magnenat-Thalmann, N., Kalra, P., Luc Leveque, J., Bazin, R., Batisse, D., and Querleux, B. 2002. A computational skin model: fold and wrinkle formation. IEEE Trans. Information Technology in Biomedicine 6, 4, 317--323. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Mahadevan, L., and Rica, S. 2005. Self-organized origami. Science 307, 5716, 1740--1740.Google ScholarGoogle Scholar
  21. McAdams, A., Zhu, Y., Selle, A., Empey, M., Tamstorf, R., Teran, J., and Sifakis, E. 2011. Efficient elasticity for character skinning with contact and collisions. ACM Trans. Graph. 30, 4, 37:1--37:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Mezger, J., Thomaszewski, B., Pabst, S., and Strasser, W. 2009. Interactive physically-based shape editing. Computer Aided Geometric Design 26, 6, 680--694. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Molino, N., Bao, Z., and Fedkiw, R. 2004. A virtual node algorithm for changing mesh topology during simulation. ACM Trans. Graph. 23, 3, 385--392. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Müller, M., and Gross, M. 2004. Interactive virtual materials. In Proceedings of Graphics Interface 2004, GI '04, 239--246. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Müller, M., Dorsey, J., McMillan, L., Jagnow, R., and Cutler, B. 2002. Stable real-time deformations. In Symposium on Computer Animation, SCA '02, 49--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Nesme, M., Kry, P. G., Jeřábková, L., and Faure, F. 2009. Preserving topology and elasticity for embedded deformable models. ACM Trans. Graph. 28, 3, 52:1--52:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Paige, C., and Saunders, M. 1975. Solution of sparse indefinite systems of linear equations. SIAM Journal on Numerical Analysis 12, 4, 617--629.Google ScholarGoogle ScholarCross RefCross Ref
  28. Parker, E. G., and O'Brien, J. F. 2009. Real-time deformation and fracture in a game environment. In Symposium on Computer Animation, SCA '09, 165--175. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Rohmer, D., Popa, T., Cani, M.-P., Hahmann, S., and Sheffer, A. 2010. Animation wrinkling: augmenting coarse cloth simulations with realistic-looking wrinkles. ACM Trans. Graph. (SIGGRAPH ASIA) 29, 6 (Dec.), 157:1--157:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Sederberg, T. W., and Parry, S. R. 1986. Free-form deformation of solid geometric models. SIGGRAPH Comput. Graph. 20, 4 (Aug.), 151--160. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Seiler, M., Spillmann, J., and Harders, M. 2012. Enriching coarse interactive elastic objects with high-resolution data-driven deformations. In Symp. on Comptuer Animation, 9--17. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Sifakis, E., Neverov, I., and Fedkiw, R. 2005. Automatic determination of facial muscle activations from sparse motion capture marker data. ACM Trans. Graph. 24, 3 (July), 417--425. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Sifakis, E., Shinar, T., Irving, G., and Fedkiw, R. 2007. Hybrid simulation of deformable solids. In Symposium on Computer Animation, 81--90. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Terzopoulos, D., and Waters, K. 1990. Physically-based facial modelling, analysis, and animation. The journal of visualization and computer animation 1, 2, 73--80.Google ScholarGoogle Scholar
  35. Terzopoulos, D., and Witkin, A. 1988. Physically based models with rigid and deformable components. IEEE Comput. Graph. Appl. 8, 6 (Nov.), 41--51. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Terzopoulos, D., Platt, J., Barr, A., and Fleischer, K. 1987. Elastically deformable models. SIGGRAPH Comput. Graph. 21, 4 (Aug.), 205--214. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Thomaszewski, B., Wacker, M., and Strasser, W. 2006. A consistent bending model for cloth simulation with corotational subdivision finite elements. In Symposium on Computer Animation, SCA '06, 107--116. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Timoshenko, S., and Gere, J. 2009. Theory of Elastic Stability. Dover Civil and Mechanical Engineering Series. Dover.Google ScholarGoogle Scholar
  39. Venkataraman, K., Lodha, S., and Raghavan, R. 2005. A kinematic-variational model for animating skin with wrinkles. Computers & Graphics 29, 5, 756--770. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Wang, Y., Wang, C. C., and Yuen, M. M. 2006. Fast energy-based surface wrinkle modeling. Comp. Graph. 30, 1, 111--125. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Wojtan, C., and Turk, G. 2008. Fast viscoelastic behavior with thin features. ACM Trans. Graph. 27, 3 (Aug.), 47:1--47:8. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Embedded thin shells for wrinkle simulation

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 32, Issue 4
          July 2013
          1215 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/2461912
          Issue’s Table of Contents

          Copyright © 2013 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 21 July 2013
          Published in tog Volume 32, Issue 4

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader