skip to main content
research-article

Near-exhaustive precomputation of secondary cloth effects

Published:21 July 2013Publication History
Skip Abstract Section

Abstract

The central argument against data-driven methods in computer graphics rests on the curse of dimensionality: it is intractable to precompute "everything" about a complex space. In this paper, we challenge that assumption by using several thousand CPU-hours to perform a massive exploration of the space of secondary clothing effects on a character animated through a large motion graph. Our system continually explores the phase space of cloth dynamics, incrementally constructing a secondary cloth motion graph that captures the dynamics of the system. We find that it is possible to sample the dynamical space to a low visual error tolerance and that secondary motion graphs containing tens of gigabytes of raw mesh data can be compressed down to only tens of megabytes. These results allow us to capture the effect of high-resolution, off-line cloth simulation for a rich space of character motion and deliver it efficiently as part of an interactive application.

Skip Supplemental Material Section

Supplemental Material

tp091.mp4

References

  1. An, S. S., Kim, T., and James, D. L. 2008. Optimizing cubature for efficient integration of subspace deformations. ACM Transactions on Graphics 27, 5 (Dec.), 165:1--165:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Arikan, O., and Forsyth, D. A. 2002. Interactive motion generation from examples. In Proc. of ACM SIGGRAPH '02, 483--490. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Baraff, D., and Witkin, A. 1998. Large steps in cloth simulation. In Proc. of SIGGRAPH '98, 43--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Barbič, J., and James, D. 2005. Real-time subspace integration for St. Venant-Kirchhoff deformable models. ACM Transactions on Graphics 24, 3 (Aug.), 982--990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Barbič, J., and Popović, J. 2008. Real-time control of physically based simulations using gentle forces. ACM Transactions on Graphics 27, 5 (Dec.), 163:1--163:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Bridson, R., Fedkiw, R., and Anderson, J. 2002. Robust treatment of collisions, contact and friction for cloth animation. In Proc. of ACM SIGGRAPH '02, 594--603. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Bridson, R., Marino, S., and Fedkiw, R. 2003. Simulation of clothing with folds and wrinkles. In Proc. '03 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 28--36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Choi, K.-J., and Ko, H.-S. 2002. Stable but responsive cloth. In Proc. of ACM SIGGRAPH '02, 604--611. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. de Aguiar, E., Sigal, L., Treuille, A., and Hodgins, J. K. 2010. Stable spaces for real-time clothing. ACM Trans. Graph. 29 (July), 106:1--106:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Feng, W.-w., Yu, Y., and Kim, B.-u. 2010. A deformation transformer for real-time cloth animation. ACM Transactions on Graphics 1, 212, 1--9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Guan, P., Sigal, L., Reznitskaya, V., and Hodgins, J. K. 2012. Multi-linear data-driven dynamic hair model with efficient hair-body collision handling. Proc. '12 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 295--304. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Halevy, A., Norvig, P., and Pereira, F. 2009. The unreasonable effectiveness of data. IEEE Intelligent Systems 24, 2 (Mar.), 8--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Hilsmann, A., and Eisert, P. 2012. Image-based animation of clothes. Eurographics, 1--4.Google ScholarGoogle Scholar
  14. James, D. L., and Fatahalian, K. 2003. Precomputing interactive dynamic deformable scenes. Tech. Rep. CMU-RI-TR-03-33, Carnegie Mellon University Robotics Institute.Google ScholarGoogle Scholar
  15. James, D. L., and Pai, D. K. 2002. DyRT: dynamic response textures for real time deformation simulation with graphics hardware. ACM Trans. Graph. 21, 3 (July), 582--585. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Kaldor, J. M., James, D. L., and Marschner, S. 2010. Efficient yarn-based cloth with adaptive contact linearization. ACM Transactions on Graphics 29, 4 (July), 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Kavan, L., Gerszewski, D., Bargteil, A. W., and Sloan, P.-P. 2011. Physics-inspired upsampling for cloth simulation in games. ACM Trans. Graph. 30, 4 (July). Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Kovar, L., Gleicher, M., and Pighin, F. 2002. Motion graphs. In Proc. of ACM SIGGRAPH '02, 473--482. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Miguel, E., Bradley, D., Thomaszewski, B., Bickel, B., Matusik, W., Otaduy, M. A., and Marschner, S. 2012. Data-driven estimation of cloth simulation models. Eurographics 31, 2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Müller, M., and Chentanez, N. 2010. Wrinkle meshes. In Proc. '10 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 85--92. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Müller, M., Röder, T., Clausen, M., Eberhardt, B., Krüger, B., and Weber, A. 2007. Documentation mocap database HDM05. Tech. Rep. CG-2007-2, Universität Bonn, June.Google ScholarGoogle Scholar
  22. Narain, R., Samii, A., and O'Brien, J. F. 2012. Adaptive anisotropic remeshing for cloth simulation. ACM Transactions on Graphics 31, 6 (Nov.), 147:1--10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Nealen, A., Mller, M., Keiser, R., Boxerman, E., and Carlson, M. 2006. Physically based deformable models in computer graphics. Computer Graphics Forum 25, 4, 809--836.Google ScholarGoogle ScholarCross RefCross Ref
  24. Popa, T., Zhou, Q., Bradley, D., Kraevoy, V., Fu, H., Sheffer, A., and Heidrich, W. 2009. Wrinkling captured garments using space-time data-driven deformation. Computer Graphics 28, 2.Google ScholarGoogle Scholar
  25. Rohmer, D., Popa, T., Cani, M.-p., Hahmann, S., and Sheffer, A. 2010. Animation wrinkling: Augmenting coarse cloth simulations with realistic-looking wrinkles. ACM Transactions on Graphics 29, 6, 1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Terzopoulos, D., Platt, J., Barr, A., and Fleischer, K. 1987. Elastically deformable models. In Proc. of ACM SIGGRAPH '87, 205--214. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Thomaszewski, B., Wacker, M., Straer, W., Lyard, E., Luible, C., Volino, P., Kasap, M., Muggeo, V., and Magnenat-Thalmann, N. 2007. Advanced topics in virtual garment simulation. In Eurographics 2007 - Tutorials, 795--855.Google ScholarGoogle Scholar
  28. Treuille, A., Lewis, A., and Popović, Z. 2006. Model reduction for real-time fluids. ACM Transactions on Graphics 25, 3 (July), 826--834. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Twigg, C. D., and James, D. L. 2007. Many-worlds browsing for control of multibody dynamics. ACM Transactions on Graphics 26, 3 (July), 14:1--14:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Twigg, C. D., and James, D. L. 2008. Backward steps in rigid body simulation. ACM Transactions on Graphics 27, 3 (Aug.), 25:1--25:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Wang, H., Hecht, F., Ramamoorthi, R., and O'Brien, J. F. 2010. Example-based wrinkle synthesis for clothing animation. In Proc. of ACM SIGGRAPH '10, 107:1--8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Wang, H., O'Brien, J. F., and Ramamoorthi, R. 2011. Data-driven elastic models for cloth: modeling and measurement. ACM Transactions on Graphics 30, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Wicke, M., Stanton, M., and Treuille, A. 2009. Modular bases for fluid dynamics. ACM Transactions on Graphics 28, 3 (July), 39:1--39:8. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Near-exhaustive precomputation of secondary cloth effects

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 32, Issue 4
        July 2013
        1215 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2461912
        Issue’s Table of Contents

        Copyright © 2013 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 21 July 2013
        Published in tog Volume 32, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader