skip to main content
research-article

Line segment sampling with blue-noise properties

Published:21 July 2013Publication History
Skip Abstract Section

Abstract

Line segment sampling has recently been adopted in many rendering algorithms for better handling of a wide range of effects such as motion blur, defocus blur and scattering media. A question naturally raised is how to generate line segment samples with good properties that can effectively reduce variance and aliasing artifacts observed in the rendering results. This paper studies this problem and presents a frequency analysis of line segment sampling. The analysis shows that the frequency content of a line segment sample is equivalent to the weighted frequency content of a point sample. The weight introduces anisotropy that smoothly changes among point samples, line segment samples and line samples according to the lengths of the samples. Line segment sampling thus makes it possible to achieve a balance between noise (point sampling) and aliasing (line sampling) under the same sampling rate. Based on the analysis, we propose a line segment sampling scheme to preserve blue-noise properties of samples which can significantly reduce noise and aliasing artifacts in reconstruction results. We demonstrate that our sampling scheme improves the quality of depth-of-field rendering, motion blur rendering, and temporal light field reconstruction.

Skip Supplemental Material Section

Supplemental Material

tp134.mp4

References

  1. Akenine-Möller, T., Munkberg, J., and Hasselgren, J. 2007. Stochastic rasterization using time-continuous triangles. In GH, 7--16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Balzer, M., Schlömer, T., and Deussen, O. 2009. Capacity-constrained point distributions: a variant of lloyd's method. ACM Trans. Graph. 28, 3 (July), 86:1--86:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Barringer, R., Gribel, C. J., and Akenine-Möller, T. 2012. High-quality curve rendering using line sampled visibility. ACM Trans. Graph. 31, 6 (Nov.), 162:1--162:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Bowers, J., Wang, R., Wei, L.-Y., and Maletz, D. 2010. Parallel poisson disk sampling with spectrum analysis on surfaces. ACM Trans. Graph. 29, 6 (Dec.), 166:1--166:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bridson, R. 2007. Fast poisson disk sampling in arbitrary dimensions. In ACM SIGGRAPH 2007 sketches, ACM, New York, NY, USA, SIGGRAPH '07. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Cheslack-Postava, E., Wang, R., Akerlund, O., and Pellacini, F. 2008. Fast, realistic lighting and material design using nonlinear cut approximation. ACM Trans. Graph. 27, 5 (Dec.), 128:1--128:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Cohen, M. F., Shade, J., Hiller, S., and Deussen, O. 2003. Wang tiles for image and texture generation. ACM Trans. Graph. 22, 3 (July), 287--294. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Cook, R. L. 1986. Stochastic sampling in computer graphics. ACM Trans. Graph. 5, 1 (Jan.), 51--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Dunbar, D., and Humphreys, G. 2006. A spatial data structure for fast poisson-disk sample generation. ACM Trans. Graph. 25, 3 (July), 503--508. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Durand, F., Holzschuch, N., Soler, C., Chan, E., and Sillion, F. X. 2005. A frequency analysis of light transport. ACM Trans. Graph. 24, 3 (July), 1115--1126. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Ebeida, M. S., Davidson, A. A., Patney, A., Knupp, P. M., Mitchell, S. A., and Owens, J. D. 2011. Efficient maximal poisson-disk sampling. ACM Trans. Graph. 30, 4 (July), 49:1--49:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Ebeida, M. S., Mitchell, S. A., Patney, A., Davidson, A. A., and Owens, J. D. 2012. A simple algorithm for maximal poisson-disk sampling in high dimensions. Comp. Graph. Forum 31, 2pt4 (May), 785--794. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Egan, K., Tseng, Y.-T., Holzschuch, N., Durand, F., and Ramamoorthi, R. 2009. Frequency analysis and sheared reconstruction for rendering motion blur. ACM Trans. Graph. 28, 3 (July), 93:1--93:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Egan, K., Hecht, F., Durand, F., and Ramamoorthi, R. 2011. Frequency analysis and sheared filtering for shadow light fields of complex occluders. ACM Trans. Graph. 30, 2 (Apr.), 9:1--9:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Fattal, R. 2011. Blue-noise point sampling using kernel density model. ACM Trans. Graph. 30, 4 (July), 48:1--48:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Gribel, C. J., Doggett, M., and Akenine-Möller, T. 2010. Analytical motion blur rasterization with compression. In HPG, 163--172. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Gribel, C. J., Barringer, R., and Akenine-Möller, T. 2011. High-quality spatio-temporal rendering using semi-analytical visibility. ACM Trans. Graph. 30, 4 (July), 54:1--54:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Hachisuka, T., Jarosz, W., Weistroffer, R. P., Dale, K., Humphreys, G., Zwicker, M., and Jensen, H. W. 2008. Multidimensional adaptive sampling and reconstruction for ray tracing. ACM Trans. Graph. 27, 3 (Aug.), 33:1--33:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Havran, V., Bittner, J., Herzog, R., and Seidel, H.-P. 2005. Ray maps for global illumination. In EGSR, 43--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Jarosz, W., Zwicker, M., and Jensen, H. W. 2008. The beam radiance estimate for volumetric photon mapping. Comp. Graph. Forum 27, 2 (Apr.), 557--566.Google ScholarGoogle ScholarCross RefCross Ref
  21. Jarosz, W., Nowrouzezahrai, D., Sadeghi, I., and Jensen, H. W. 2011. A comprehensive theory of volumetric radiance estimation using photon points and beams. ACM Trans. Graph. 30, 1 (Feb.), 5:1--5:19. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Jarosz, W., Nowrouzezahrai, D., Thomas, R., Sloan, P. P., and Zwicker, M. 2011. Progressive photon beams. ACM Trans. Graph. 30, 6 (Dec.). Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Jensen, H. W., and Buhler, J. 2002. A rapid hierarchical rendering technique for translucent materials. ACM Trans. Graph. 21, 3 (July), 576--581. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Jones, T. R., and Perry, R. N. 2000. Antialiasing with line samples. In EGRW, 197--206. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Kopf, J., Cohen-Or, D., Deussen, O., and Lischinski, D. 2006. Recursive wang tiles for real-time blue noise. ACM Trans. Graph. 25, 3 (July), 509--518. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Lagae, A., and Dutré, P. 2005. A procedural object distribution function. ACM Trans. Graph. 24, 4 (Oct.), 1442--1461. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Lagae, A., and Dutré, P. 2008. A comparison of methods for generating Poisson disk distributions. Computer Graphics Forum 27, 1 (March), 114--129.Google ScholarGoogle ScholarCross RefCross Ref
  28. Lehtinen, J., Aila, T., Chen, J., Laine, S., and Durand, F. 2011. Temporal light field reconstruction for rendering distribution effects. ACM Trans. Graph. 30, 4 (July), 55:1--55:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Li, H., Wei, L.-Y., Sander, P. V., and Fu, C.-W. 2010. Anisotropic blue noise sampling. ACM Trans. Graph. 29, 6 (Dec.), 167:1--167:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Lloyd, S. 1983. An optimization approach to relaxation labeling algorithms. Image and Vision Computing 1, 2 (May), 85--91.Google ScholarGoogle ScholarCross RefCross Ref
  31. McCool, M., and Fiume, E. 1992. Hierarchical poisson disk sampling distributions. In GI, 94--105. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Mehta, S. U., Wang, B., and Ramamoorthi, R. 2012. Axis-aligned filtering for interactive sampled soft shadows. ACM Trans. Graph. 31, 6 (Nov.), 163:1--163:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Mitchell, D. P. 1987. Generating antialiased images at low sampling densities. SIGGRAPH Comput. Graph. 21, 4 (Aug.), 65--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Mitchell, D. P. 1991. Spectrally optimal sampling for distribution ray tracing. SIGGRAPH Comput. Graph. 25, 4 (July), 157--164. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Nehab, D., and Shilane, P. 2004. Stratified point sampling of 3D models. In PBG, 49--56. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Novák, J., Nowrouzezahrai, D., Dachsbacher, C., and Jarosz, W. 2012. Progressive virtual beam lights. Comp. Graph. Forum 31, 4 (June), 1407--1413. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Novák, J., Nowrouzezahrai, D., Dachsbacher, C., and Jarosz, W. 2012. Virtual ray lights for rendering scenes with participating media. ACM Trans. Graph. 31, 4 (July), 60:1--60:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Ostromoukhov, V., Donohue, C., and Jodoin, P.-M. 2004. Fast hierarchical importance sampling with blue noise properties. ACM Trans. Graph. 23, 3 (Aug.), 488--495. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Ostromoukhov, V. 2007. Sampling with polyominoes. ACM Trans. Graph. 26, 3 (July). Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Öztireli, A. C., and Gross, M. 2012. Analysis and synthesis of point distributions based on pair correlation. ACM Trans. Graph. 31, 6 (Nov.), 170:1--170:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Öztireli, A. C., Alexa, M., and Gross, M. 2010. Spectral sampling of manifolds. ACM Trans. Graph. 29, 6 (Dec.), 168:1--168:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Pang, W.-M., Qu, Y., Wong, T.-T., Cohen-Or, D., and Heng, P.-A. 2008. Structure-aware halftoning. ACM Trans. Graph. 27, 3 (Aug.), 89:1--89:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Ramamoorthi, R., Mahajan, D., and Belhumeur, P. 2007. A first-order analysis of lighting, shading, and shadows. ACM Trans. Graph. 26, 1 (Jan.). Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Soler, C., Subr, K., Durand, F., Holzschuch, N., and Sillion, F. 2009. Fourier depth of field. ACM Trans. Graph. 28, 2 (May), 18:1--18:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Sun, X., Zhou, K., Lin, S., and Guo, B. 2010. Line space gathering for single scattering in large scenes. ACM Trans. Graph. 29, 4 (July), 54:1--54:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Tzeng, S., Patney, A., Davidson, A., Ebeida, M. S., Mitchell, S. A., and Owens, J. D. 2012. High-quality parallel depth-of-field using line samples. In HPG, 23--31. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Wei, L.-Y., and Wang, R. 2011. Differential domain analysis for non-uniform sampling. ACM Trans. Graph. 30, 4 (July), 50:1--50:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Wei, L.-Y. 2008. Parallel poisson disk sampling. ACM Trans. Graph. 27, 3 (Aug.), 20:1--20:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Wei, L.-Y. 2010. Multi-class blue noise sampling. ACM Trans. Graph. 29 (July), 79:1--79:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. White, K. B., Cline, D., and Egbert, P. K. 2007. Poisson disk point sets by hierarchical dart throwing. In RT, 129--132. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Zhou, Y., Huang, H., Wei, L.-Y., and Wang, R. 2012. Point sampling with general noise spectrum. ACM Trans. Graph. 31, 4 (July), 76:1--76:11. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Line segment sampling with blue-noise properties

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Graphics
        ACM Transactions on Graphics  Volume 32, Issue 4
        July 2013
        1215 pages
        ISSN:0730-0301
        EISSN:1557-7368
        DOI:10.1145/2461912
        Issue’s Table of Contents

        Copyright © 2013 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 21 July 2013
        Published in tog Volume 32, Issue 4

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader