skip to main content
10.1145/2462356.2462372acmconferencesArticle/Chapter ViewAbstractPublication PagessocgConference Proceedingsconference-collections
research-article

A new approach to output-sensitive voronoi diagrams and delaunay triangulations

Published:17 June 2013Publication History

ABSTRACT

We describe a new algorithm for computing the Voronoi diagram of a set of n points in constant-dimensional Euclidean space. The running time of our algorithm is O(f log n log Δ) where f is the output complexity of the Voronoi diagram and Δ is the spread of the input, the ratio of largest to smallest pairwise distances. Despite the simplicity of the algorithm and its analysis, it improves on the state of the art for all inputs with polynomial spread and near-linear output size. The key idea is to first build the Voronoi diagram of a superset of the input points using ideas from Voronoi refinement mesh generation. Then, the extra points are removed in a straightforward way that allows the total work to be bounded in terms of the output complexity, yielding the output sensitive bound. The removal only involves local flips and is inspired by kinetic data structures.

References

  1. Umut A. Acar, Benoıt Hudson, Gary L. Miller, and Todd Phillips. SVR: Practical engineering of a fast 3D meshing algorithm. In Proc. 16th International Meshing Roundtable, pages 45--62, 2007.Google ScholarGoogle Scholar
  2. Nancy M. Amato and Edgar A. Ramos. On computing Voronoi diagrams by divide-prune-and-conquer. In Symposium on Computational Geometry, pages 166--175, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Franz Aurenhammer. Voronoi diagrams--a survey of a fundamental geometric data structure. ACM Comput. Surv., 23(3):345--405, September 1991. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. David Avis and Komei Fukuda. A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra. Discrete & Computational Geometry, 8(1):295--313, 1992.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. David Bremner. Incremental convex hull algorithms are not output sensitive. Discrete & Computational Geometry, 21(1):57--68, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  6. Timothy M. Chan. Output-sensitive results on convex hulls, extreme points, and related problems. Discrete & Computational Geometry, 16(4):369--387, 1996.Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Timothy M. Chan, Jack Snoeyink, and Chee-Keng Yap. Primal dividing and dual pruning: Output-sensitive construction of four-dimensional polytopes and three-dimensional Voronoi diagrams. Discrete & Computational Geometry, 18(4):433--454, 1997.Google ScholarGoogle ScholarCross RefCross Ref
  8. Bernard Chazelle, Olivier Devillers, Ferran Hurtado, Mercè Mora, Vera Sacristán, and Monique Teillaud. Splitting a Delaunay triangulation in linear time. Algorithmica, 34:39--46, 2002.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Bernard Chazelle and Wolfgang Mulzer. Computing hereditary convex structures. Discrete & Computational Geometry, 45(4):796--823, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Siu-Wing Cheng, Tamal K. Dey, and Jonathan Richard Shewchuk. Delaunay Mesh Generation. CRC Press, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Herbert Edelsbrunner. Geometry and Topology for Mesh Generation. Cambridge University Press, 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Herbert Edelsbrunner and Nimish R. Shah. Incremental topological flipping works for regular triangulations. Algorithmica, 15, 1996.Google ScholarGoogle Scholar
  13. Leonidas Guibas. Kinetic data structures. In Dinesh P. Mehta and Sartaj Sahni, editors, Handbook of Data Structures and Applications. CRC Press, 2005.Google ScholarGoogle Scholar
  14. Sariel Har-Peled and Manor Mendel. Fast construction of nets in low dimensional metrics, and their applications. SIAM Journal on Computing, 35(5):1148--1184, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Benoıt Hudson, Gary Miller, and Todd Phillips. Sparse Voronoi Refinement. In Proceedings of the 15th International Meshing Roundtable, pages 339--356, Birmingham, Alabama, 2006. Long version available as Carnegie Mellon University Technical Report Carnegie Mellon University-CS-06--132.Google ScholarGoogle ScholarCross RefCross Ref
  16. Benoıt Hudson, Gary L. Miller, and Todd Phillips. Sparse Parallel Delaunay Refinement. In 19th Annual ACM Symposium on Parallelism in Algorithms and Architectures, pages 339--347, San Diego, June 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Benoıt Hudson, Gary L. Miller, Todd Phillips, and Donald R. Sheehy. Size complexity of volume meshes vs. surface meshes. In SODA: ACM-SIAM Symposium on Discrete Algorithms, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Michael Joswig and Günter M. Ziegler. Convex hulls, oracles, and homology. J. Symb. Comput, 38(4):1247--1259, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  19. V. Klee. On the complexity of d-dimensional Voronoi diagrams. Archiv der Mathematik, 34:75, 1980.Google ScholarGoogle ScholarCross RefCross Ref
  20. Jir'ı Matousek and Otfried Schwarzkopf. Linear optimization queries. In Symposium on Computational Geometry, pages 16--25, 1992. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Gary L. Miller, Todd Phillips, and Donald R. Sheehy. Beating the spread: Time-optimal point meshing. In SOCG: Proceedings of the 27th ACM Symposium on Computational Geometry, pages 321--330, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Gary L. Miller, Donald R. Sheehy, and Ameya Velingker. A fast algorithm for well-spaced points and approximate delaunay graphs. In SOCG: Proceedings of the 29th ACM Symposium on Computational Geometry, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Gary L. Miller, Dafna Talmor, Shang-Hua Teng, and Noel Walkington. On the radius-edge condition in the control volume method. SIAM J. on Numerical Analysis, 36(6):1690--1708, 1999. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Raimund Seidel. Constructing higher-dimensional convex hulls at logarithmic cost per face. In STOC: ACM Symposium on Theory of Computing, 1986. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Raimund Seidel. On the number of faces in higher-dimensional Voronoi diagrams. In Proceedings of the 3rd Annual Symposium on Computational Geometry, pages 181--185, 1987. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Donald R. Sheehy. Mesh Generation and Geometric Persistent Homology. PhD thesis, Carnegie Mellon University, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Donald R. Sheehy. New Bounds on the Size of Optimal Meshes. Computer Graphics Forum, 31(5):1627--1635, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Garret Swart. Finding the convex hull facet by facet. Journal of Algorithms, 6(1):17--48, 1985.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. A new approach to output-sensitive voronoi diagrams and delaunay triangulations

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      SoCG '13: Proceedings of the twenty-ninth annual symposium on Computational geometry
      June 2013
      472 pages
      ISBN:9781450320313
      DOI:10.1145/2462356

      Copyright © 2013 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 17 June 2013

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      SoCG '13 Paper Acceptance Rate48of137submissions,35%Overall Acceptance Rate625of1,685submissions,37%

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader