skip to main content
10.1145/2485895.2485897acmconferencesArticle/Chapter ViewAbstractPublication PagesscaConference Proceedingsconference-collections
research-article

Chimera grids for water simulation

Published:19 July 2013Publication History

ABSTRACT

We introduce a new method for large scale water simulation using Chimera grid embedding, which discretizes space with overlapping Cartesian grids that translate and rotate in order to decompose the domain into different regions of interest with varying spatial resolutions. Grids can track both fluid features and solid objects, allowing for dynamic spatial adaptivity without remeshing or repartitioning the domain. We solve the inviscid incompressible Navier-Stokes equations with an arbitrary-Lagrangian-Eulerian style semi-Lagrangian advection scheme and a monolithic SPD Poisson solver. We modify the particle level set method in order to adapt it to Chimera grids including particle treatment across grid boundaries with disparate cell sizes, and strategies to deal with locality in the implementation of the level set and fast marching algorithms. We use a local Voronoi mesh construction to solve for pressure and address a number of issues that arise with the treatment of the velocity near the interface. The resulting method is highly scalable on distributed parallel architectures with minimal communication costs.

References

  1. Batty, C., Xenos, S., and Houston, B. 2010. Tetrahedral embedded boundary methods for accurate and flexible adaptive fluids. In Proceedings of Eurographics.Google ScholarGoogle Scholar
  2. Benek, J. A., Steger, J. L., and Dougherty, F. C. 1983. A flexible grid embedding technique with applications to the euler equations. In 6th Computational Fluid Dynamics Conference, AIAA, 373--382.Google ScholarGoogle Scholar
  3. Berger, M., and Colella, P. 1989. Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys. 82, 64--84. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Berger, M., and Oliger, J. 1984. Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 53, 484--512.Google ScholarGoogle Scholar
  5. Brochu, T., Batty, C., and Bridson, R. 2010. Matching fluid simulation elements to surface geometry and topology. ACM Trans. Graph. (SIGGRAPH Proc.), 47:1--47:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Chang, L., and Yuan, G. 2012. An efficient and accurate reconstruction algorithm for the formulation of cell-centered diffusion schemes. J. Comput. Phys. 231, 20, 6935--6952. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Chentanez, N., Feldman, B. E., Labelle, F., O'Brien, J. F., and Shewchuk, J. R. 2007. Liquid simulation on lattice-based tetrahedral meshes. In ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 219--228. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Cohen, J. M., Tariq, S., and Green, S. 2010. Interactive fluid-particle simulation using translating eulerian grids. In Proc. of the 2010 ACM SIGGRAPH Symp. on Interactive 3D Graphics and Games, 15--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Desbrun, M., and Cani, M.-P. 1996. Smoothed particles: A new paradigm for animating highly deformable bodies. In Comput. Anim. and Sim. '96 (Proc. of EG Wrkshp. on Anim. and Sim.), Springer-Verlag, R. Boulic and G. Hegron, Eds., 61--76. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Dobashi, Y., Matsuda, Y., Yamamoto, T., and Nishita, T. 2008. A fast simulation method using overlapping grids for interactions between smoke and rigid objects. Comput. Graph. Forum 27, 2, 477--486.Google ScholarGoogle ScholarCross RefCross Ref
  11. English, R., Qiu, L., Yu, Y., and Fedkiw, R. 2012. An adaptive discretization of incompressible flow using a multitude of moving cartesian grids. (submitted).Google ScholarGoogle Scholar
  12. Enright, D., Fedkiw, R., Ferziger, J., and Mitchell, I. 2002. A hybrid particle level set method for improved interface capturing. J. Comput. Phys. 183, 83--116. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Enright, D., Marschner, S., and Fedkiw, R. 2002. Animation and rendering of complex water surfaces. ACM Trans. Graph. (SIGGRAPH Proc.) 21, 3, 736--744. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Enright, D., Nguyen, D., Gibou, F., and Fedkiw, R. 2003. Using the particle level set method and a second order accurate pressure boundary condition for free surface flows. In Proc. 4th ASME-JSME Joint Fluids Eng. Conf., number FEDSM2003--45144. ASME.Google ScholarGoogle Scholar
  15. Enright, D., Losasso, F., and Fedkiw, R. 2005. A fast and accurate semi-Lagrangian particle level set method. Computers and Structures 83, 479--490. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Feldman, B., O'Brien, J., Klingner, B., and Goktekin, T. 2005. Fluids in deforming meshes. In Proc. of the ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 255--259. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Golas, A., Narain, R., Sewall, J., Krajcevski, P., Dubey, P., and Lin, M. 2012. Large-scale fluid simulation using velocity-vorticity domain decomposition. ACM Trans. Graph. 31, 6, 148:1--148:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Henshaw, W. D. 1994. A fourth-order accurate method for the incompressible Navier-Stokes equations on overlapping grids. J. Comput. Phys. 113, 1, 13--25. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Kiris, C., Kwak, D., Rogers, S., and Chang, I.-D. 1997. Computational approach for probing the flow through artificial heart devices. Journal of biomechanical engineering 119, 4, 452--460.Google ScholarGoogle ScholarCross RefCross Ref
  20. Klingner, B. M., Feldman, B. E., Chentanez, N., and O'Brien, J. F. 2006. Fluid animation with dynamic meshes. ACM Trans. Graph. (SIGGRAPH Proc.) 25, 3, 820--825. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Labelle, F., and Shewchuk, J. R. 2007. Isosurface stuffing: fast tetrahedral meshes with good dihedral angles. ACM Trans. Graph. 26, 3 (July). Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Losasso, F., Gibou, F., and Fedkiw, R. 2004. Simulating water and smoke with an octree data structure. ACM Trans. Graph. (SIGGRAPH Proc.) 23, 457--462. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Losasso, F., Fedkiw, R., and Osher, S. 2006. Spatially adaptive techniques for level set methods and incompressible flow. Computers and Fluids 35, 995--1010.Google ScholarGoogle ScholarCross RefCross Ref
  24. Molino, N., Bridson, R., Teran, J., and Fedkiw, R. 2003. A crystalline, red green strategy for meshing highly deformable objects with tetrahedra. In 12th Int. Meshing Roundtable, 103--114.Google ScholarGoogle Scholar
  25. Müller, M., Charypar, D., and Gross, M. 2003. Particle-based fluid simulation for interactive applications. In Proc. of the 2003 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 154--159. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Patel, S., Chu, A., Cohen, J., and Pighin, F. 2005. Fluid simulation via disjoint translating grids. In ACM SIGGRAPH 2005 Sketches, ACM, New York, NY, USA, SIGGRAPH '05. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Premoze, S., Tasdizen, T., Bigler, J., Lefohn, A., and Whitaker, R. 2003. Particle--based simulation of fluids. In Comp. Graph. Forum (Eurographics Proc.), vol. 22, 401--410.Google ScholarGoogle ScholarCross RefCross Ref
  28. Rasmussen, N., Enright, D., Nguyen, D., Marino, S., Sumner, N., Geiger, W., Hoon, S., and Fedkiw, R. 2004. Directable photorealistic liquids. In Proc. of the 2004 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 193--202. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Robinson-Mosher, A., Shinar, T., Grétarsson, J. T., Su, J., and Fedkiw, R. 2008. Two-way coupling of fluids to rigid and deformable solids and shells. ACM Trans. on Graphics 27, 3 (Aug.), 46:1--46:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Robinson-Mosher, A., Schroeder, C., and Fedkiw, R. 2011. A symmetric positive definite formulation for monolithic fluid structure interaction. J. Comput. Phys. 230, 1547--66. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Shah, M., Cohen, J. M., Patel, S., Lee, P., and Pighin, F. 2004. Extended galilean invariance for adaptive fluid simulation. In Proc. of the 2004 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 213--221. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Sin, F., Bargteil, A. W., and Hodgins, J. K. 2009. A point-based method for animating incompressible flow. In Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., ACM, New York, NY, USA, SCA '09, 247--255. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Stam, J. 1999. Stable fluids. In Proc. of SIGGRAPH 99, 121--128. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Sussman, M., Algrem, A. S., Bell, J. B., Colella, P., Howell, L. H., and Welcome, M. L. 1999. An adaptive level set approach for incompressible two-phase flow. J. Comput. Phys 148, 81--124. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Tan, J., Yang, X., Zhao, X., and Yang, Z. 2008. Fluid animation with multi-layer grids. In ACM SIGGRAPH/Eurographics Symposium of Computer Animation 2008 Posters.Google ScholarGoogle Scholar
  36. Tessendorf, J. 2002. Simulating ocean water. In SIGGRAPH 2002 Course Notes #9 (Simulating Nature: Realistic and Interactive Techniques), ACM Press.Google ScholarGoogle Scholar
  37. Traoré, P., Ahipo, Y. M., and Louste, C. 2009. A robust and efficient finite volume scheme for the discretization of diffusive flux on extremely skewed meshes in complex geometries. J. Comput. Phys. 228, 14, 5148--5159. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Chimera grids for water simulation

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          SCA '13: Proceedings of the 12th ACM SIGGRAPH/Eurographics Symposium on Computer Animation
          July 2013
          225 pages
          ISBN:9781450321327
          DOI:10.1145/2485895

          Copyright © 2013 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 19 July 2013

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          SCA '13 Paper Acceptance Rate20of57submissions,35%Overall Acceptance Rate183of487submissions,38%

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader