skip to main content
10.1145/2485895.2485912acmconferencesArticle/Chapter ViewAbstractPublication PagesscaConference Proceedingsconference-collections
research-article

A hybrid Lagrangian-Eulerian formulation for bubble generation and dynamics

Published:19 July 2013Publication History

ABSTRACT

We present a hybrid Lagrangian-Eulerian framework for simulating both small and large scale bubble dynamics, where the bubbles can grow or shrink in volume as dictated by pressure forces in the surrounding fluid. Small under-resolved bubbles are evolved using Lagrangian particles that are monolithically two-way coupled to the surrounding flow in a manner that closely approximates the analytic bubble oscillation frequency while converging to the analytic volume as predicted by the well-known Rayleigh-Plesset equation. We present a novel scheme for interconverting between these under-resolved Lagrangian bubbles and larger well-resolved bubbles that are modeled with a traditional Eulerian level set approach. We also present a novel seeding mechanism to realistically generate bubbles when simulating fluid structure interaction with complex objects such as ship propellers. Moreover, our framework for bubble generation is general enough to be incorporated into all grid-based as well as particle-based fluid simulation methods.

Skip Supplemental Material Section

Supplemental Material

p105-patkar.avi

References

  1. Aanjaneya, M., Patkar, S., and Fedkiw, R. 2013. A monolithic mass tracking formulation for bubbles in incompressible flow. Journal of Computational Physics 247, 17--61.Google ScholarGoogle ScholarCross RefCross Ref
  2. Boyd, L., and Bridson, R. 2012. Multiflip for energetic two-phase fluid simulation. ACM Trans. Graph. 31, 2, 16:1--16:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Brennen, C. E. 1995. Cavitation and Bubble Dynamics. Oxford University Press, USA.Google ScholarGoogle Scholar
  4. Busaryev, O., Dey, T. K., Wang, H., and Ren, Z. 2012. Animating bubble interactions in a liquid foam. ACM Trans. Graph. 31, 4, 63:1--63:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Cleary, P. W., Pyo, S. H., Prakash, M., and Koo, B. K. 2007. Bubbling and frothing liquids. ACM Trans. Graph. 26, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Enright, D., Marschner, S., and Fedkiw, R. 2002. Animation and rendering of complex water surfaces. ACM Trans. Graph. (SIGGRAPH Proc.) 21, 3, 736--744. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Enright, D., Nguyen, D., Gibou, F., and Fedkiw, R. 2003. Using the particle level set method and a second order accurate pressure boundary condition for free surface flows. In Proc. 4th ASME-JSME Joint Fluids Eng. Conf., number FEDSM2003--45144. ASME.Google ScholarGoogle Scholar
  8. Enright, D., Losasso, F., and Fedkiw, R. 2005. A fast and accurate semi-Lagrangian particle level set method. Computers and Structures 83, 479--490. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Fedkiw, R., Liu, X.-D., and Osher, S. 2002. A general technique for eliminating spurious oscillations in conservative schemes for multiphase and multispecies euler equations. Int. J. Nonlinear Sci. and Numer. Sim. 3, 99--106.Google ScholarGoogle ScholarCross RefCross Ref
  10. Foster, N., and Fedkiw, R. 2001. Practical animation of liquids. In Proc. of ACM SIGGRAPH 2001, 23--30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Geiger, W., Leo, M., Rasmussen, N., Losasso, F., and Fedkiw, R. 2006. So real it'll make you wet. In SIGGRAPH 2006 Sketches & Applications, ACM Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Greenwood, S. T., and House, D. H. 2004. Better with bubbles: enhancing the visual realism of simulated fluid. In Proc. of the 2004 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 287--296. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Grétarsson, J., and Fedkiw, R. 2013. Fully conservative, robust treatment of thin shell fluid-structure interactions in compressible flows. Journal of Computational Physics 245, 160--204.Google ScholarGoogle ScholarCross RefCross Ref
  14. Guendelman, E., Selle, A., Losasso, F., and Fedkiw, R. 2005. Coupling water and smoke to thin deformable and rigid shells. ACM Trans. Graph. (SIGGRAPH Proc.) 24, 3, 973--981. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Hong, J.-M., and Kim, C.-H. 2003. Animation of bubbles in liquid. Comput. Graph. Forum (Eurographics Proc.) 22, 3, 253--262.Google ScholarGoogle ScholarCross RefCross Ref
  16. Hong, J.-M., and Kim, C.-H. 2005. Discontinuous fluids. ACM Trans. Graph. (SIGGRAPH Proc.) 24, 3, 915--920. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Hong, J.-M., Lee, H.-Y., Yoon, J.-C., and Kim, C.-H. 2008. Bubbles alive. ACM Trans. Graph. 27, 3, 48:1--48:4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Ihmsen, M., Akinci, N., Akinci, G., and Teschner, M. 2012. Unified spray, foam and air bubbles for particle-based fluids. Vis. Comput. 28, 6-8, 669--677. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Jakob, W., and Marschner, S. 2012. Manifold exploration: a markov chain monte carlo technique for rendering scenes with difficult specular transport. ACM Trans. Graph., 58:1--58:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Kim, T., and Carlson, M. 2007. A simple boiling module. In ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 27--34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Kim, B., Liu, Y., Llamas, I., Jiao, X., and Rossignac, J. 2007. Simulation of bubbles in foam with the volume control method. ACM Trans. Graph. 26, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Kim, D., Song, O.-y., and Ko, H.-S. 2010. A practical simulation of dispersed bubble flow. ACM Trans. Graph. 29, 70:1--70:5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Kim, P.-R., Lee, H.-Y., Kim, J.-H., and Kim, C.-H. 2012. Controlling shapes of air bubbles in a multi-phase fluid simulation. Vis. Comput. 28, 6-8, 597--602. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Kwatra, N., Su, J., Grétarsson, J., and Fedkiw, R. 2009. A method for avoiding the acoustic time step restriction in compressible flow. J. Comput. Phys. 228, 11, 4146--4161. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Lee, H.-Y., Hong, J.-M., and Kim, C.-H. 2009. Interchangeable sph and level set method in multiphase fluids. Vis. Comput. 25, 5-7, 713--718. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Lentine, M., Grétarsson, J., and Fedkiw, R. 2011. An unconditionally stable fully conservative semi-lagrangian method. J. Comput. Phys. 230, 2857--2879. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Losasso, F., Fedkiw, R., and Osher, S. 2006. Spatially adaptive techniques for level set methods and incompressible flow. Computers and Fluids 35, 995--1010.Google ScholarGoogle ScholarCross RefCross Ref
  28. Losasso, F., Shinar, T., Selle, A., and Fedkiw, R. 2006. Multiple interacting liquids. ACM Trans. Graph. (SIGGRAPH Proc.) 25, 3, 812--819. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Losasso, F., Talton, J., Kwatra, N., and Fedkiw, R. 2008. Two-way coupled sph and particle level set fluid simulation. IEEE TVCG 14, 4, 797--804. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Majda, A. J. 2001. Vorticity and Incompressible Flow. Cambridge Univ Pr.Google ScholarGoogle Scholar
  31. Mihalef, V., Unlusu, B., Metaxas, D., Sussman, M., and Hussaini, M. 2006. Physics based boiling simulation. In SCA '06: Proc. of the 2006 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 317--324. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Mihalef, V., Metaxas, D. N., and Sussman, M. 2009. Simulation of two-phase flow with sub-scale droplet and bubble effects. Comput. Graph. Forum.Google ScholarGoogle Scholar
  33. Moss, W., Yeh, H., Hong, J.-M., Lin, M. C., and Manocha, D. 2010. Sounding liquids: Automatic sound synthesis from fluid simulation. ACM TOG 29, 3, 21:1--21:13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Müller, M., Solenthaler, B., Keiser, R., and Gross, M. 2005. Particle-based fluid-fluid interaction. In Proc. of the 2005 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 237--244. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Selle, A., Fedkiw, R., Kim, B., Liu, Y., and Rossignac, J. 2008. An Unconditionally Stable MacCormack Method. J. Sci. Comp. 35, 2, 350--371. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Song, O.-Y., Shin, H., and Ko, H.-S. 2005. Stable but nondissipative water. ACM Trans. Graph., 81--97. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Thürey, N., Sadlo, F., Schirm, S., Müller-Fischer, M., and Gross, M. 2007. Real-time simulations of bubbles and foam within a shallow water framework. In SCA '07: Proc. of 2007 ACM SIGGRAPH/Eurographics symposium on Computer animation, 191--198. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. van Terwisga, T. J. C. Cavitation on ship propellers. http://ocw.tudelft.nl/courses/marine-technology/cavitation-on-ship-propellers/.Google ScholarGoogle Scholar
  39. Zheng, C., and James, D. L. 2009. Harmonic fluids. ACM Trans. Graph. (SIGGRAPH Proc.) 28, 3, 37:1--37:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Zheng, W., Yong, J.-H., and Paul, J.-C. 2006. Simulation of bubbles. In SCA '06: Proceedings of the 2006 ACM SIGGRAPH/Eurographics symposium on Computer animation, 325--333. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. A hybrid Lagrangian-Eulerian formulation for bubble generation and dynamics

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          SCA '13: Proceedings of the 12th ACM SIGGRAPH/Eurographics Symposium on Computer Animation
          July 2013
          225 pages
          ISBN:9781450321327
          DOI:10.1145/2485895

          Copyright © 2013 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 19 July 2013

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article

          Acceptance Rates

          SCA '13 Paper Acceptance Rate20of57submissions,35%Overall Acceptance Rate183of487submissions,38%

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader