Abstract
For approximating subdivision schemes, there are several unified frameworks for effectively constructing subdivision surfaces generalizing splines of an arbitrary degree. In this article, we present a similar unified framework for interpolatory subdivision schemes. We first decompose the 2n-point interpolatory curve subdivision scheme into repeated local operations. By extending the repeated local operations to quadrilateral meshes, an efficient algorithm can be further derived for interpolatory surface subdivision. Depending on the number n of repeated local operations, the continuity of the limit curve or surface can be of an arbitrary order CL, except in the surface case at a limited number of extraordinary vertices where C1 continuity with bounded curvature is obtained. Boundary rules built upon repeated local operations are also presented.
Supplemental Material
- Augsdorfer, U. H., Cashman, T. J., Dodgson, N. A., and Sabin, M. A. 2009. Numerical checking of C1 for arbitrary degree quadrilateral subdivision schemes. In Mathematics of Surfaces, E. Hancock, R. Martin, and M. Sabin, Eds., Lecture Notes in Computer Science, vol. 5654, Springer, 45--54. Google Scholar
Digital Library
- Cai, Z. 1995. Convergence, error estimation and some properties of four-point interpolation subdivision scheme. Comput. Aid. Geom. Des. 12, 5, 459--468. Google Scholar
Digital Library
- Cashman, T. J. 2012. Beyond catmull-clark? A survey of advances in subdivision surface methods. Comput. Graph. Forum 31, 1, 42--61. Google Scholar
Digital Library
- Cashman, T. J., Augsdorfer, U. H., Dodgson, N. A., and Sabin, M. A. 2009a. NURBS with extraordinary points: High-degree, non-uniform, rational subdivision schemes. ACM Trans. Graph. 28, 3, 46:1--46:9. Google Scholar
Digital Library
- Cashman, T. J., Dodgson, N. A., and Sabin, M. A. 2009b. A symmetric, non-uniform, refine and smooth subdivision algorithm for general degree B-splines. Comput. Aid. Geom. Des. 26, 1, 94--104. Google Scholar
Digital Library
- Catmull, E. and Clark, J. 1978. Recursively generated b-spline surfaces on arbitrary topology meshes. Comput. Aid. Des. 10, 6, 350--355.Google Scholar
Cross Ref
- Daubechies, I. 1992. Ten Lectures on Wavelets. SIAM. Google Scholar
Digital Library
- Deslauriers, G. and Dubuc, S. 1989. Symmetric iterative interpolation processes. Construct. Approx. 5, 1, 49--68.Google Scholar
Cross Ref
- Dong, B. and Shen, Z. 2007. Pseudo-splines, wavelets and framelets. Appl. Comput. Harmon. Anal. 22, 1, 78--104.Google Scholar
Cross Ref
- Doo, D. and Sabin, M. 1978. Analysis of the behaviour of recursive division surfaces near extraordinary points. Comput. Aid. Des. 10, 6, 356--360.Google Scholar
Cross Ref
- Dubuc, S. 1986. Interpolation through an iterative scheme. J. Math. Anal. Appl. 114, 1, 185--204.Google Scholar
- Dyn, N., Hormann, K., Sabin, M. A., and Shen, Z. 2008. Polynomial reproduction by symmetric subdivision schemes. J. Approx. Theory 155, 1, 28--42. Google Scholar
Digital Library
- Dyn, N. and Levin, D. 2002. Subdivision schemes in geometric modelling. Acta Numerica 11, 73--114.Google Scholar
Cross Ref
- Dyn, N., Levin, D., and Gregory, J. A. 1987. A four-point interpolatory subdivision scheme for curve design. Comput. Aid. Geom. Des. 4, 4, 257--268. Google Scholar
Digital Library
- Dyn, N., Levin, D., and Gregory, J. A. 1990. A butterfly subdivision scheme for surface interpolation with tension control. ACM Trans. Graph. 9, 2, 160--169. Google Scholar
Digital Library
- Eirola, T. 1992. Sobolev characterization of solutions of dilation equations. SIAM J. Math. Anal. 23, 4, 1015--1030. Google Scholar
Digital Library
- Fang, M., Ma, W., and Wang, G. 2010. A generalized curve subdivision scheme of arbitrary order with a tension parameter. Comput. Aid. Geom. Des. 27, 9, 720--733. Google Scholar
Digital Library
- Hassan, M. F., Ivrissimitzis, I. P., Dodgson, N. A., and Sabin, M. A. 2002. An interpolating 4-point C2 ternary stationary subdivision scheme. Comput. Aid. Geom. Des. 19, 1, 1--18. Google Scholar
Digital Library
- Kobbelt, L. 1996. Interpolatory subdivision on open quadrilateral nets with arbitrary topology. Comput. Graph. Forum 15, 3, 409--420.Google Scholar
Cross Ref
- Lane, J. M. and Riesenfeld, R. F. 1980. A theoretical development for the computer generation and display of piecewise polynomial surfaces. IEEE Trans. Pattern Anal. Mach. Intell. 2, 1, 35--46. Google Scholar
Digital Library
- Li, G. and Ma, W. 2005. Interpolatory ternary subdivision surfaces. Comput. Aid. Geom. Des. 23, 1, 45--77. Google Scholar
Digital Library
- Li, G. and Ma, W. 2007. A method for constructing interpolatory subdivision schemes and blending subdivision. Comput. Graph. Forum 26, 2, 185--201.Google Scholar
Cross Ref
- Li, G., Ma, W., and Bao, H. 2005. A new interpolatory subdivision for quadrilateral meshes. Comput. Graph. Forum 24, 1, 3--16.Google Scholar
Cross Ref
- Lin, S., Luo, X., You, F., and Li, Z. 2008. Deducing interpolating subdivision schemes from approximating subdivision schemes. ACM Trans. Graph. 27, 5, 146:1--146:7. Google Scholar
Digital Library
- Maillot, J. and Stam, J. 2001. A unified subdivision scheme for polygonal modeling. Comput. Graph. Forum 20, 3, 471--479.Google Scholar
Cross Ref
- Oswald, P. and Schroder, P. 2003. Composite primal/dual square-root-of-three subdivision schemes. Comput. Aid. Geom. Des. 20, 3, 135--164. Google Scholar
Digital Library
- Peters, J. and Reif, U. 2008. Subdivision Surfaces. Springer. Google Scholar
Digital Library
- Prautzsch, H. 1998. Smoothness of subdivision surfaces at extraordinary points. Adv. Comput. Math. 9, 3--4, 377--389.Google Scholar
Cross Ref
- Prautzsch, H. and Chen, Q. 2011. Analyzing midpoint subdivision. Comput. Aid. Geom. Des. 28, 7, 407--419. Google Scholar
Digital Library
- Reif, U. 1995. A unified approach to subdivision algorithms near extraordinary vertices. Comput. Aid. Geom. Des. 12, 2, 153--174. Google Scholar
Digital Library
- Schaefer, S. and Goldman, R. 2009. Non-uniform subdivision for B-splines of arbitrary degree. Comput. Aid. Geom. Des. 26, 1, 75--81. Google Scholar
Digital Library
- Schaefer, S. and Warren, J. 2002. A factored interpolatory subdivision scheme for quadrilateral surfaces. In Curve and Surface Fitting Saint-Malo, 373--382.Google Scholar
- Silva, S., Madeira, J., and Santos, B. S. 2009. Polymeco: An integrated environment for polygonal mesh analysis and comparison. Comput. Graph. 33, 2, 181--191. Google Scholar
Digital Library
- Stam, J. 2001. On subdivision schemes generalizing uniform b-spline surfaces of arbitrary degree. Comput. Aid. Geom. Des. 18, 5, 383--396. Google Scholar
Digital Library
- Warren, J. and Weimer, H. 2001. Subdivision Methods for Geometric Design: A Constructive Approach. Morgan Kaufmann, San Fransisco, CA. Google Scholar
Digital Library
- Weissman, A. 1989. A 6-point interpolatory subdivision scheme for curve design. M.S. thesis, Tel-Aviv University.Google Scholar
- Zorin, D. and Schroder, P. 2001. A unified framework for primal/dual quadrilateral subdivision schemes. Comput. Aid. Geom. Des. 18, 5, 429--454. Google Scholar
Digital Library
- Zorin, D., Schroder, P., Derose, T., Kobbelt, L., Levin, A., and Sweldens, W. 2000. Subdivision for modeling and animation. In ACM SIGGRAPH Course Notes, n. 23. ACM Press, New York.Google Scholar
- Zorin, D., Schroder, P., and Sweldens, W. 1996. Interpolating subdivision for meshes with arbitrary topology. In Proceedings of the SIGGRAPH International Conference on Computer Graphics and Interactive Techniques. J. Fujii, Ed., ACM Press, New York, 189--192. Google Scholar
Digital Library
Index Terms
A unified interpolatory subdivision scheme for quadrilateral meshes
Recommendations
Constructing an Interpolatory Subdivision Scheme from Doo-Sabin Subdivision
CADGRAPHICS '11: Proceedings of the 2011 12th International Conference on Computer-Aided Design and Computer GraphicsThis paper presents an interpolatory subdivision scheme derived from the Doo-Sabin subdivision scheme. We first present the relations among three curve subdivision schemes, namely a four point interpolatory subdivision scheme, a cubic B-spline curve ...
Surface interpolation of meshes by geometric subdivision
Subdivision surfaces are generated by repeated approximation or interpolation from initial control meshes. In this paper, two new non-linear subdivision schemes, face based subdivision scheme and normal based subdivision scheme, are introduced for ...
Interpolatory ternary subdivision surfaces
This paper proposes an interpolatory ternary subdivision for quadrilateral meshes that produces C2 continuous limit surfaces for regular meshes while achieves G1 continuity with bounded curvature at extraordinary vertices. The subdivision splits each ...





Comments