skip to main content
research-article

A unified interpolatory subdivision scheme for quadrilateral meshes

Published:04 July 2013Publication History
Skip Abstract Section

Abstract

For approximating subdivision schemes, there are several unified frameworks for effectively constructing subdivision surfaces generalizing splines of an arbitrary degree. In this article, we present a similar unified framework for interpolatory subdivision schemes. We first decompose the 2n-point interpolatory curve subdivision scheme into repeated local operations. By extending the repeated local operations to quadrilateral meshes, an efficient algorithm can be further derived for interpolatory surface subdivision. Depending on the number n of repeated local operations, the continuity of the limit curve or surface can be of an arbitrary order CL, except in the surface case at a limited number of extraordinary vertices where C1 continuity with bounded curvature is obtained. Boundary rules built upon repeated local operations are also presented.

Skip Supplemental Material Section

Supplemental Material

tp131.mp4

References

  1. Augsdorfer, U. H., Cashman, T. J., Dodgson, N. A., and Sabin, M. A. 2009. Numerical checking of C1 for arbitrary degree quadrilateral subdivision schemes. In Mathematics of Surfaces, E. Hancock, R. Martin, and M. Sabin, Eds., Lecture Notes in Computer Science, vol. 5654, Springer, 45--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Cai, Z. 1995. Convergence, error estimation and some properties of four-point interpolation subdivision scheme. Comput. Aid. Geom. Des. 12, 5, 459--468. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Cashman, T. J. 2012. Beyond catmull-clark? A survey of advances in subdivision surface methods. Comput. Graph. Forum 31, 1, 42--61. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Cashman, T. J., Augsdorfer, U. H., Dodgson, N. A., and Sabin, M. A. 2009a. NURBS with extraordinary points: High-degree, non-uniform, rational subdivision schemes. ACM Trans. Graph. 28, 3, 46:1--46:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Cashman, T. J., Dodgson, N. A., and Sabin, M. A. 2009b. A symmetric, non-uniform, refine and smooth subdivision algorithm for general degree B-splines. Comput. Aid. Geom. Des. 26, 1, 94--104. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Catmull, E. and Clark, J. 1978. Recursively generated b-spline surfaces on arbitrary topology meshes. Comput. Aid. Des. 10, 6, 350--355.Google ScholarGoogle ScholarCross RefCross Ref
  7. Daubechies, I. 1992. Ten Lectures on Wavelets. SIAM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Deslauriers, G. and Dubuc, S. 1989. Symmetric iterative interpolation processes. Construct. Approx. 5, 1, 49--68.Google ScholarGoogle ScholarCross RefCross Ref
  9. Dong, B. and Shen, Z. 2007. Pseudo-splines, wavelets and framelets. Appl. Comput. Harmon. Anal. 22, 1, 78--104.Google ScholarGoogle ScholarCross RefCross Ref
  10. Doo, D. and Sabin, M. 1978. Analysis of the behaviour of recursive division surfaces near extraordinary points. Comput. Aid. Des. 10, 6, 356--360.Google ScholarGoogle ScholarCross RefCross Ref
  11. Dubuc, S. 1986. Interpolation through an iterative scheme. J. Math. Anal. Appl. 114, 1, 185--204.Google ScholarGoogle Scholar
  12. Dyn, N., Hormann, K., Sabin, M. A., and Shen, Z. 2008. Polynomial reproduction by symmetric subdivision schemes. J. Approx. Theory 155, 1, 28--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Dyn, N. and Levin, D. 2002. Subdivision schemes in geometric modelling. Acta Numerica 11, 73--114.Google ScholarGoogle ScholarCross RefCross Ref
  14. Dyn, N., Levin, D., and Gregory, J. A. 1987. A four-point interpolatory subdivision scheme for curve design. Comput. Aid. Geom. Des. 4, 4, 257--268. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Dyn, N., Levin, D., and Gregory, J. A. 1990. A butterfly subdivision scheme for surface interpolation with tension control. ACM Trans. Graph. 9, 2, 160--169. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Eirola, T. 1992. Sobolev characterization of solutions of dilation equations. SIAM J. Math. Anal. 23, 4, 1015--1030. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Fang, M., Ma, W., and Wang, G. 2010. A generalized curve subdivision scheme of arbitrary order with a tension parameter. Comput. Aid. Geom. Des. 27, 9, 720--733. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Hassan, M. F., Ivrissimitzis, I. P., Dodgson, N. A., and Sabin, M. A. 2002. An interpolating 4-point C2 ternary stationary subdivision scheme. Comput. Aid. Geom. Des. 19, 1, 1--18. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Kobbelt, L. 1996. Interpolatory subdivision on open quadrilateral nets with arbitrary topology. Comput. Graph. Forum 15, 3, 409--420.Google ScholarGoogle ScholarCross RefCross Ref
  20. Lane, J. M. and Riesenfeld, R. F. 1980. A theoretical development for the computer generation and display of piecewise polynomial surfaces. IEEE Trans. Pattern Anal. Mach. Intell. 2, 1, 35--46. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Li, G. and Ma, W. 2005. Interpolatory ternary subdivision surfaces. Comput. Aid. Geom. Des. 23, 1, 45--77. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Li, G. and Ma, W. 2007. A method for constructing interpolatory subdivision schemes and blending subdivision. Comput. Graph. Forum 26, 2, 185--201.Google ScholarGoogle ScholarCross RefCross Ref
  23. Li, G., Ma, W., and Bao, H. 2005. A new interpolatory subdivision for quadrilateral meshes. Comput. Graph. Forum 24, 1, 3--16.Google ScholarGoogle ScholarCross RefCross Ref
  24. Lin, S., Luo, X., You, F., and Li, Z. 2008. Deducing interpolating subdivision schemes from approximating subdivision schemes. ACM Trans. Graph. 27, 5, 146:1--146:7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Maillot, J. and Stam, J. 2001. A unified subdivision scheme for polygonal modeling. Comput. Graph. Forum 20, 3, 471--479.Google ScholarGoogle ScholarCross RefCross Ref
  26. Oswald, P. and Schroder, P. 2003. Composite primal/dual square-root-of-three subdivision schemes. Comput. Aid. Geom. Des. 20, 3, 135--164. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Peters, J. and Reif, U. 2008. Subdivision Surfaces. Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Prautzsch, H. 1998. Smoothness of subdivision surfaces at extraordinary points. Adv. Comput. Math. 9, 3--4, 377--389.Google ScholarGoogle ScholarCross RefCross Ref
  29. Prautzsch, H. and Chen, Q. 2011. Analyzing midpoint subdivision. Comput. Aid. Geom. Des. 28, 7, 407--419. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Reif, U. 1995. A unified approach to subdivision algorithms near extraordinary vertices. Comput. Aid. Geom. Des. 12, 2, 153--174. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Schaefer, S. and Goldman, R. 2009. Non-uniform subdivision for B-splines of arbitrary degree. Comput. Aid. Geom. Des. 26, 1, 75--81. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Schaefer, S. and Warren, J. 2002. A factored interpolatory subdivision scheme for quadrilateral surfaces. In Curve and Surface Fitting Saint-Malo, 373--382.Google ScholarGoogle Scholar
  33. Silva, S., Madeira, J., and Santos, B. S. 2009. Polymeco: An integrated environment for polygonal mesh analysis and comparison. Comput. Graph. 33, 2, 181--191. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Stam, J. 2001. On subdivision schemes generalizing uniform b-spline surfaces of arbitrary degree. Comput. Aid. Geom. Des. 18, 5, 383--396. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Warren, J. and Weimer, H. 2001. Subdivision Methods for Geometric Design: A Constructive Approach. Morgan Kaufmann, San Fransisco, CA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Weissman, A. 1989. A 6-point interpolatory subdivision scheme for curve design. M.S. thesis, Tel-Aviv University.Google ScholarGoogle Scholar
  37. Zorin, D. and Schroder, P. 2001. A unified framework for primal/dual quadrilateral subdivision schemes. Comput. Aid. Geom. Des. 18, 5, 429--454. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Zorin, D., Schroder, P., Derose, T., Kobbelt, L., Levin, A., and Sweldens, W. 2000. Subdivision for modeling and animation. In ACM SIGGRAPH Course Notes, n. 23. ACM Press, New York.Google ScholarGoogle Scholar
  39. Zorin, D., Schroder, P., and Sweldens, W. 1996. Interpolating subdivision for meshes with arbitrary topology. In Proceedings of the SIGGRAPH International Conference on Computer Graphics and Interactive Techniques. J. Fujii, Ed., ACM Press, New York, 189--192. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. A unified interpolatory subdivision scheme for quadrilateral meshes

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 32, Issue 3
          June 2013
          129 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/2487228
          Issue’s Table of Contents

          Copyright © 2013 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 4 July 2013
          • Accepted: 1 January 2013
          • Revised: 1 December 2012
          • Received: 1 November 2011
          Published in tog Volume 32, Issue 3

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader