skip to main content
research-article

5D Covariance tracing for efficient defocus and motion blur

Published:04 July 2013Publication History
Skip Abstract Section

Abstract

The rendering of effects such as motion blur and depth-of-field requires costly 5D integrals. We accelerate their computation through adaptive sampling and reconstruction based on the prediction of the anisotropy and bandwidth of the integrand. For this, we develop a new frequency analysis of the 5D temporal light-field, and show that first-order motion can be handled through simple changes of coordinates in 5D. We further introduce a compact representation of the spectrum using the covariance matrix and Gaussian approximations. We derive update equations for the 5 × 5 covariance matrices for each atomic light transport event, such as transport, occlusion, BRDF, texture, lens, and motion. The focus on atomic operations makes our work general, and removes the need for special-case formulas. We present a new rendering algorithm that computes 5D covariance matrices on the image plane by tracing paths through the scene, focusing on the single-bounce case. This allows us to reduce sampling rates when appropriate and perform reconstruction of images with complex depth-of-field and motion blur effects.

Skip Supplemental Material Section

Supplemental Material

tp150.mp4

References

  1. Arikan, O., Forsyth, D. A., and O'Brien, J. F. 2005. Fast and detailed approximate global illumination by irradiance decomposition. ACM Trans. Graph. 24, 3, 1108--1114. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Bagher, M., M., Soler, C., Subr, K., Belcour, L., and Holzschuch, N. 2012. Interactive rendering of acquired materials on dynamic geometry using bandwidth prediction. In Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (I3D'12). M. Garland and R. Wang, Eds., ACM Press, New York, 127--134. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Barsky, B. A., Horn, D. R., Klein, S. A., Pang, J. A., and Yu, M. 2003. Camera models and optical systems used in computer graphics: Part II, image based techniques. In Proceedings of the International Conference on Computational Science and its Applications. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Barsky, B. A. and Kosloff, T. J. 2008. Algorithms for rendering depth of field effects in computer graphics. In Proceedings of the 12th WSEAS International Conference on Computers. 999--1010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Bolin, M. R. and Meyer, G. W. 1995. A frequency based ray tracer. In Proceedings of the Annual Conference on Computer Graphics (SIGGRAPH'95). 409--418. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Bolin, M. R. and Meyer, G. W. 1998. A perceptually based adaptive sampling algorithm. In Proceedings of the Annual Conference on Computer Graphics (SIGGRAPH'98). 299--309. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Chai, J.-X., Tong, X., Chan, S.-C., and Shum, H.-Y. 2000. Plenoptic sampling. In Proceedings of the Annual Conference on Computer Graphics (SIGGRAPH'00). 307--318. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Chen, M. and Arvo, J. 2000. Theory and application of specular path perturbation. ACM Trans. Graph. 19, 4, 246--278. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Cook, R. L. 1986. Stochastic sampling in computer graphics. ACM Trans. Graph. 5, 51--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Cook, R. L., Carpenter, L., and Catmull, E. 1987. The reyes image rendering architecture. ACM SIGGRAPH Comput. Graph. 21, 95--102. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Cook, R. L., Porter, T., and Carpenter, L. 1984. Distributed ray tracing. ACM SIGGRAPH Comput. Graph. 19, 3, 137--145. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Dippé, M. A. Z. and Wold, E. H. 1985. Antialiasing through stochastic sampling. ACM SIGGRAPH Comput. Graph. 19, 3, 69--78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Durand, F., Holzschuch, N., Soler, C., Chan, E., and Sillion, F. X. 2005. A frequency analysis of light transport. ACM Trans. Graph. 24, 3, 1115--1126. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Egan, K., Durand, F., and Ramamoorthi, R. 2011a. Practical filtering for efficient ray-traced directional occlusion. ACM Trans. Graph. 30, 6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Egan, K., Hecht, F., Durand, F., and Ramamoorthi, R. 2011b. Frequency analysis and sheared filtering for shadow light fields of complex occluders. ACM Trans. Graph. 30, 2, 1--13. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Egan, K., Tseng, Y.-T., Holzschuch, N., Durand, F., and Ramamoorthi, R. 2009. Frequency analysis and sheared reconstruction for rendering motion blur. ACM Trans. Graph. 28, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Fatahalian, K., Luong, E., Boulos, S., Akeley, K., Mark, W. R., and Hanrahan, P. 2009. Data-parallel rasterization of micropolygons with defocus and motion blur. In Proceedings of the Conference on High Performance Graphics (HPG'09). ACM Press, New York, 59--68. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Ferwerda, J. A., Shirley, P., Pattanaik, S. N., and Greenberg, D. P. 1997. A model of visual masking for computer graphics. In Proceedings of the Annual Conference on Computer Graphics (SIGGRAPH'97). 143--152. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Gerrard, A. and Burch, J. 1975. Introduction to Matrix Methods in Optics. Wiley Series in Pure and Applied Optics. John Wiley and Sons.Google ScholarGoogle Scholar
  20. Hachisuka, T., Jarosz, W., Weistroffer, R. P., Dale, K., Humphreys, G., Zwicker, M., and Jensen, H. W. 2008. Multidimensional adaptive sampling and reconstruction for ray tracing. ACM Trans. Graph. 27, 3, 33:1--33:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Hasan, M., Pellacini, F., and Bala, K. 2007. Matrix row-column sampling for the many-light problem. ACM Trans. Graph. 26, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Heckbert, P. S. 1989. Fundamentals of texture mapping and image warping, Master's thesis, UCB/CSD 89/516CS, UC Berkeley. University of Californiya. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Hou, Q., Qin, H., Li, W., Guo, B., and Zhou, K. 2010. Micropolygon ray tracing with defocus and motion blur. In ACM SIGGRAPH'10 Papers. ACM Press, New York, 64:1--64:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Igehy, H. 1999. Tracing ray differentials. In Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'99). ACM Press/Addison-Wesley Publishing Co., New York, 179--186. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Kirk, D. and Arvo, J. 1991. Unbiased sampling techniques for image synthesis. SIGGRAPH Comput. Graph. 25, 4, 153--156. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Kolb, C., Hanrahan, P. M., and Mitchell, D. 1995. A realistic camera model for computer graphics. In Proceedings of the Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'95). 317--324. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Kraus, M. and Strengert, M. 2007. Depth-of-field rendering by pyramidal image processing. Comput. Graph. Forum 26, 3, 645--654.Google ScholarGoogle ScholarCross RefCross Ref
  28. Lee, S., Eisemann, E., and Seidel, H.-P. 2009. Depth-of-field rendering with multiview synthesis. ACM Trans. Graph. 28, 5, 134:1--134:6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Lee, S., Eisemann, E., and Seidel, H.-P. 2010. Real-time lens blur effects and focus control. ACM Trans. Graph. 29, 4, 65:1--65:7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Lehtinen, J., Aila, T., Chen, J., Laine, S., and Durand, F. 2011. Temporal light field reconstruction for rendering distribution effects. ACM Trans. Graph. 30, 4. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Lessig, C. and Fiume, E. 2010. On the effective dimension of light transport. Comput. Graph. Forum 29, 4, 1399--1403. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Levin, A., Hasinoff, S. W., Green, P., Durand, F., and Freeman, W. T. 2009. 4D frequency analysis of computational cameras for depth of field extension. ACM Trans. Graph. 28, 3, 97:1--97:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Levin, A., Sand, P., Cho, T. S., Durand, F., and Freeman, W. T. 2008. Motion-invariant photography. ACM Trans. Graph. 27, 3, 71:1--71:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Loviscach, J. 2005. Motion blur for textures by means of anisotropic filtering. In Proceedings of the Eurographics Symposium on Rendering. 105--110. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Mahajan, D., Shlizerman, I. K., Ramamoorthi, R., and Belhumeur, P. 2007. A theory of locally low dimensional light transport. ACM Trans. Graph. 26, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Max, N. L. and Lerner, D. M. 1985. A two-and-a-half-d motion-blur algorithm. In Proceedings of the 12th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'85). ACM Press, New York, 85--93. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Mitchell, D. 1987. Generating antialiased images at low sampling densities. In Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'87). Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Mitchell, D. P. 1991. Spectrally optimal sampling for distribution ray tracing. In Proceedings of the 18th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'91). 157--164. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Myszkowski, K. 1998. The visible differences predictor: applications to global illumination problems. In Proceedings of the Eurographics Workshop on Rendering Techniques (EG'98). 223--236.Google ScholarGoogle ScholarCross RefCross Ref
  40. Ng, R. 2005. Fourier slice photography. ACM Trans. Graph. 24, 3, 735--744. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Overbeck, R. S., Donner, C., and Ramamoorthi, R. 2009. Adaptive wavelet rendering. ACM Trans. Graph. 28, 5, 140:1--140:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Potmesil, M. and Chakravarty, I. 1981. A lens and aperture camera model for synthetic image generation. SIGGRAPH Comput. Graph. 15, 3, 297--305. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Potmesil, M. and Chakravarty, I. 1983. Modeling motion blur in computer-generated images. SIGGRAPH Comput. Graph. 17, 3, 389--399. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Quinn, J. A., Langbein, F. C., and Martin, R. R. 2007. Lowdiscrepancy point sampling of meshes for rendering. In Proceedings of the Eurographics Symposium on Point-Based Graphics. 19--28.Google ScholarGoogle Scholar
  45. Ramamoorthi, R. and Hanrahan, P. 2001. A signal-processing framework for inverse rendering. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH'01). 117--128. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Ramamoorthi, R., Koudelka, M., and Belhumeur, P. 2005. A fourier theory for cast shadows. IEEE Trans. Pattern Anal. Mach. Intell. 27, 2, 288--295. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Ramamoorthi, R., Mahajan, D., and Belhumeur, P. 2007. A first-order analysis of lighting, shading, and shadows. ACM Trans. Graph. 26, 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Rousselle, F., Knaus, C., and Zwicker, M. 2011. Adaptive sampling and reconstruction using greedy error minimization. In Proceedings of the ACM SIGGRAPH Asia. ACM Press, New York. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Sen, P. and Darabi, S. 2011a. Compressive rendering: A rendering application of compressed sensing. IEEE Trans. Visual. Comput. Graph. 17, 4, 487--499. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Sen, P. and Darabi, S. 2011b. On fltering the noise from the random parameters in monte carlo rendering. ACM Trans. Graph. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Sloan, P.-P., Hall, J., Hart, J., and Snyder, J. 2003. Clustered principal components for precomputed radiance transfer. ACM Trans. Graph. 22, 3, 382--391. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Soler, C., Subr, K., Durand, F., Holzschuch, N., and Sillion, F. X. 2009. Fourier depth of field. ACM Trans. Graph. 28, 2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Stokes, W. A., Ferwerda, J. A., Walter, B., and Greenberg, D. P. 2004. Perceptual illumination components: a new approach to efficient, high quality global illumination rendering. ACM Trans. Graph. 23, 3, 742--749. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Suykens, F. and Willems, Y. 2001. Path differentials and applications. In Proceedings of the Rendering Techniques'01 (EG Workshop on Rendering). 257--268. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Walter, B., Arbree, A., Bala, K., and Greenberg, D. P. 2006. Multidimensional lightcuts. ACM Trans. Graph. 25, 3, 1081--1088. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Ward, G. J. and Heckbert, P. 1992. Irradiance gradients. In Proceedings of the Workshop on Rendering (EG'92). 85--98.Google ScholarGoogle Scholar
  57. Whitted, T. 1980. An improved illumination model for shaded display. Comm. ACM 23, 6, 343--349. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Zhou, T., Chen, J., and Pullen, M. 2007. Accurate depth of field simulation in real time. Comput. Graph. Forum 26, 1, 15--23.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. 5D Covariance tracing for efficient defocus and motion blur

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 32, Issue 3
      June 2013
      129 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/2487228
      Issue’s Table of Contents

      Copyright © 2013 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 4 July 2013
      • Accepted: 1 February 2013
      • Revised: 1 November 2012
      • Received: 1 January 2012
      Published in tog Volume 32, Issue 3

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader