research-article

Detecting Deceptive Chat-Based Communication Using Typing Behavior and Message Cues

Published:01 August 2013Publication History

Abstract

Computer-mediated deception is prevalent and may have serious consequences for individuals, organizations, and society. This article investigates several metrics as predictors of deception in synchronous chat-based environments, where participants must often spontaneously formulate deceptive responses. Based on cognitive load theory, we hypothesize that deception influences response time, word count, lexical diversity, and the number of times a chat message is edited. Using a custom chatbot to conduct interviews in an experiment, we collected 1,572 deceitful and 1,590 truthful chat-based responses. The results of the experiment confirm that deception is positively correlated with response time and the number of edits and negatively correlated to word count. Contrary to our prediction, we found that deception is not significantly correlated with lexical diversity. Furthermore, the age of the participant moderates the influence of deception on response time. Our results have implications for understanding deceit in chat-based communication and building deception-detection decision aids in chat-based systems.

References

  1. Aamodt, M. G. and Custer, H. 2006. Who can best catch a liar? A meta-analysis of individual differences in detecting deception. Foren. Exam. 15, 1, 6--11.Google ScholarGoogle Scholar
  2. ABC NEWS. 2007. Cyber bullying leads to teen’s suicide.Google ScholarGoogle Scholar
  3. Allen, M. D., Bigler, E. D., Larsen, J., Goodrich-Hunsaker, N. J., and Hopkins, R. O. 2007. Functional neuroimaging evidence for high cognitive effort on the Word Memory Test in the absence of external incentives. Brain Injury 21, 13--14, 1425--1428.Google ScholarGoogle ScholarCross RefCross Ref
  4. Arnsten, A. F. T. and Goldman-Rakic, P. S. 1998. Noise stress impairs prefrontal cortical cognitive function in monkeys - Evidence for a hyperdopaminergic mechanism. Archi. General Psychi. 55, 4, 362--368.Google ScholarGoogle ScholarCross RefCross Ref
  5. Atkin, D., Jeffres, L., Neuendorf, K., Lange, R., and Skalski, P. 2005. Why they chat: Predicting adoption and use of chat rooms. In Online News and the Public, Michael B. Salwen, Bruce Garrison and Paul D. Driscoll Eds., Lawrence Erlbaum Associates, Inc., Mahwah, NJ, 303--320.Google ScholarGoogle Scholar
  6. Baron, R. and Kenny, D. 1986. The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. J. Person. Social Psych. 51, 6, 1173--1182.Google ScholarGoogle ScholarCross RefCross Ref
  7. Bond, C. F. and DePáulo, B. M. 2006. Accuracy of deception judgments. Person. Social Psych. Rev. 10, 3, 214--234.Google ScholarGoogle ScholarCross RefCross Ref
  8. Bremner, J. D. 2006. Stress and brain atrophy. CNS Neurol. Disord. Drug Targets 5, 5, 503--512.Google ScholarGoogle ScholarCross RefCross Ref
  9. Brodal, P. 2004. The Central Nervous System: Structure and Function 3rd Ed. Oxford University Press, Oxford, UK.Google ScholarGoogle Scholar
  10. Buller, D. and Burgoon, J. K. 1996. Interpersonal deception theory. Comm. Theory 6, 3, 203--242.Google ScholarGoogle ScholarCross RefCross Ref
  11. Buller, D. B., Burgoon, J. K., Buslig, A. L. S., and Roiger, J. F. 1994. Interpersonal deception .8. Further analysis of nonverbal and verbal correlates of equivocation from the bavelas et-al (1990) research. J. Lang. Social Psych. 13, 4, 396--417.Google ScholarGoogle ScholarCross RefCross Ref
  12. Burgoon, J. K., Burgoon, M., Broneck, K., Alvaro, E., and Nunmaker, J. F. 2002. Effects of synchronicity and proximity on group communication. In Proceedings of the National Communication Convention.Google ScholarGoogle Scholar
  13. Cerf, V. G. 1973. RFC 439: PARRY encounters the DOCTOR. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Chen, H. and Wang, F. 2005. Artificial intelligence for homeland security, IEEE Intell. Syst. 12--16. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Cohen, J. 1988. Statistical Power Analysis for the Behavioral Sciences 2nd Ed. Lawrence Erlbaum Associates, Inc.Google ScholarGoogle Scholar
  16. DePáulo, B. M., Lindsay, J. J., Malone, B. E., Muhlenbruck, L., Charlton, K., and Cooper, H. 2003. Cues to deception. Psych. Bull. 129, 1, 74--118.Google ScholarGoogle ScholarCross RefCross Ref
  17. Ekman, P. and Friesen, W. V. 1969. Nonverbal leakage and clues to deception. Psychiatry 32, 1, 88--106.Google ScholarGoogle ScholarCross RefCross Ref
  18. Elkins, A. C. and Derrick D. C. 2013. The sound of trust: Voice as a measurement of trust during interactions with embodied conversational agents. Group Dec. Negot. 1--17.Google ScholarGoogle Scholar
  19. Epstein, R. 2007. The truth about online dating. Scientific Amer. 26--34.Google ScholarGoogle Scholar
  20. Fitzpatrick, M. 2006. Deleting online predators Act (H.R. 5319).Google ScholarGoogle Scholar
  21. Hains, A. B. and Arnsten, A. F. T. 2008. Molecular mechanisms of stress-induced prefrontal cortical impairment: Implications for mental illness. Learn. Memory 15, 8, 551--564.Google ScholarGoogle ScholarCross RefCross Ref
  22. Halek, M. and Eisenhauer, J. G. 2001. Demography of risk aversion. J. Risk Ins. 68, 1, 1--24.Google ScholarGoogle ScholarCross RefCross Ref
  23. Hall, B. and Henningsen, D. D. 2008. Social facilitation and human-computer interaction. Comput. Hum. Behav. 24, 6, 2965--2971. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Hancock, J. T., Curry, L. E., Goorha, S., and Woodworth, M. 2008. On lying and being lied to: A linguistic analysis of deception in computer-mediated communication. Discourse Process. 45, 1, 1--23.Google ScholarGoogle ScholarCross RefCross Ref
  25. Hauser, M. D., Chomsky, N., and Fitch, W. T. 2002. The faculty of language: What is it, who has it, and how did it evolve? Science 298, 5598, 1569--1579.Google ScholarGoogle Scholar
  26. Hendy, K. C., Liao, J. Q., and Milgram, P. 1997. Combining time and intensity effects in assessing operator information-processing load. Human Factors 39, 1, 30--47.Google ScholarGoogle ScholarCross RefCross Ref
  27. Henry, J. P. 1993. Biological basis of the stress response. News Physi. Sci. 8, 69--73.Google ScholarGoogle Scholar
  28. Hopper, R. and Bell, R. A. 1984. Broadening the deception construct. Quart. J. Speech 70, 3, 288--302.Google ScholarGoogle ScholarCross RefCross Ref
  29. Jensen, M. L., Lowry, P. B., and Jenkins, J. L. 2011. Effects of automated and participative decision support in computer-aided credibility assessment. J. Manage. Inf. Syst. 28, 1, 201--234. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Johnson, M. K. and Raye, C. L. 1981. Reality ,monitoring. Psych. Rev. 88, 1, 67--85.Google ScholarGoogle ScholarCross RefCross Ref
  31. Kuo, F.-Y. and Yin, C.-P. 2011. A linguistic analysis of group support systems interactions for uncovering social realities of organizations. ACM Trans. Manage. Inf. Syst. 2, 1, 1--21. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Laguna, K. and Babcock, R. L. 1997. Computer anxiety in young and older adults: Implications for human-computer interactions in older populations. Comput. Human Behav. 13, 3, 317--326.Google ScholarGoogle ScholarCross RefCross Ref
  33. Lau, R. Y. K., Liao, S. Y., Kwok, R. C.-W., Xu, K., Xia, Y., and Li, Y. 2012. Text mining and probabilistic language modeling for online review spam detection. ACM Trans. Manage. Inf. Syst. 2, 4, 1--30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Lee, T. M. C., Liu, H. L., Tan, L. H., Chan, C. C. H., Mahankali, S., Feng, C. M., Hou, J. W., Fox, P. T., and Gao, J. H. 2002. Lie detection by functional magnetic resonance imaging. Human Brain Mapping 15, 3, 157--164.Google ScholarGoogle ScholarCross RefCross Ref
  35. National Institutes of Health. 2011. National Library of Medicine - Medical Subject Headings. http://www.nlm.nih.gov/cgi/mesh/2010/MBcgi?mode=&term=Psychophysiology.Google ScholarGoogle Scholar
  36. Nass, C. and Moon, Y. 2000. Machines and mindleness: Social responses to computers. J. Soc. Issues 56, 1, 81--103.Google ScholarGoogle ScholarCross RefCross Ref
  37. Nass, C., Steuer, J., and Tauber, E. R. 1994. Computers are social actors. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems: Celebrating Independence. ACM, New York, 72--78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Nass, C., Moon, Y., Morkes, J., Kim, E.-Y., and Fogg, B. J. 1997. Computers are social actors: A review of current research. In Human Values and the Design of Computer Technology, Cambridge University Press, Cambridge, UK, 137--161. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Newman, M. L., Pennebaker, J. W., Berry, D. S., and Richards, J. M. 2003. Lying words: Predicting deception from linguistic styles. Personal. Social Psych. Bull. 29, 5, 665--675.Google ScholarGoogle ScholarCross RefCross Ref
  40. Pieperhoff, P., Homke, L., Schneider, F., Habel, U., Shah, N. J., Zilles, K., and Amunts, K. 2008. Deformation field morphometry reveals age-related structural differences between the brains of adults up to 51 years. J. Neurosci. 28, 4, 828--842.Google ScholarGoogle ScholarCross RefCross Ref
  41. Reed, K., Doty, D. H., and May, D. R. 2005. The impact of aging on self-efficacy and computer skill acquisition. J. Manager.-Issues. Summer.Google ScholarGoogle Scholar
  42. Shipp, S. 2007. Structure and function of the cerebral cortex. Current Biology 17, 12, R443--R449.Google ScholarGoogle ScholarCross RefCross Ref
  43. Smith, N. 2001. Reading between the lines: An evaluation of the scientific content analysis technique (SCAN). Police research series paper 135. London: UK Home Office, Research, Development and Statistics Directorate.Google ScholarGoogle Scholar
  44. Sporer, S. L. and Schwandt, B. 2006. Paraverbal indicators of deception: A meta-analytic synthesis. Appl. Cog. Psych. 20, 4, 421--446.Google ScholarGoogle ScholarCross RefCross Ref
  45. Sweller, J. 1988. Cognitive load during problem-solving - Effects on learning. Cogniti. Sci. 12, 2, 257--285.Google ScholarGoogle Scholar
  46. Twitchell, D. P., Forsgren, N., Wiers, K., Burgoon, J. K., and Nunmaker, J. F. 2005. Detecting deception in synchronous computer-mediated communication using speech act profiling, Intel. Security Informatics. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Vargha-Khadem, F., Watkins, K. E., Price, C. J., Ashburner, J., Alcock, K. J., Connelly, A., Frackowiak, R. S., Friston, K. J., Pembrey, M. E., Mishkin, M., Gadian, D. G., and Passingham, R. E. 1998. Neural basis of an inherited speech and language disorder. Proc. Natl. Acad. Sci. 95, 21, 12695--12700.Google ScholarGoogle ScholarCross RefCross Ref
  48. Vrij, A. 2000. Detecting Lies and Deceit: the Psychology of Lying and the Implications for Professional Practice. Wiley, New York.Google ScholarGoogle Scholar
  49. Vrij, A. 2005. Criteria-based content analysis: A qualitative review of the first 37 studies. Psychol., Public Policy Law 11, 1, 3--605.Google ScholarGoogle ScholarCross RefCross Ref
  50. Vrij, A. 2008. Detecting Lies and Deceit: Pitfalls and Opportunities 2nd Ed. Wiley, Hoboken, NJ.Google ScholarGoogle Scholar
  51. Vrij, A., Mann, S., Kristen, S., and Fisher, R. P. 2007. Cues to deception and ability to detect lies as a function of police interview styles. Law Human Behav. 31, 5, 499--518.Google ScholarGoogle ScholarCross RefCross Ref
  52. Whitty, M. T., Buchanan, T., Joinson, A. N., and Meredith, A. 2012. Not all lies are spontaneous: An examination of deception across different modes of communication. J. Ameri. Soc. Inf. Sci. Tech. 63, 1, 208--216. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Zhou, L. 2005. An empirical investigation of deception behavior in instant messaging. IEEE Trans. Prof. Comm. 48, 2, 147--160.Google ScholarGoogle ScholarCross RefCross Ref
  54. Zhou, L. and Sung, Y.-W. 2008. Cues to deception in online Chinese groups. In Proceedings of the 41st Annual Hawaii International Conference on System Sciences. 146--146. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Zhou, L. and Zenebe, A. 2008. Representation and reasoning under uncertainty in deception detection: A neuro-fuzzy approach. IEEE Trans. Fuzzy Syst. 16, 2, 442--454. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Zhou, L. and Zhang, D. 2004. Can online behavior unveil deceivers? An exploratory investigation of deception in instant messaging. In Proceeding of the 37th Hawaii International Conference on System Sciences. Hawaii. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Zhou, L. and Zhang, D. 2007. Typing or messaging? Modality effect on deception detection in computer-mediated communication. Decis. Supp. Syst. 44, 1, 188--201. Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Zhou, L., Burgoon, J. K., Nunamaker, J. F., and Twitchell, D. 2004. Automating linguistics-based cues for detecting deception in text-based asynchronous computer-mediated communications. Group Decision Negoti. 13, 1, 81--106.Google ScholarGoogle ScholarCross RefCross Ref
  59. Zuckerman, M., DePáulo, B. M., and Rosenthal, R. 1981. Verbal and nonverbal communication of deception. In Advances Experimental Social Pyschology, L. Berkowitz Ed., Academic Press, Inc., vol. 14, 1--60.Google ScholarGoogle Scholar

Index Terms

  1. Detecting Deceptive Chat-Based Communication Using Typing Behavior and Message Cues

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Management Information Systems
      ACM Transactions on Management Information Systems  Volume 4, Issue 2
      August 2013
      113 pages
      ISSN:2158-656X
      EISSN:2158-6578
      DOI:10.1145/2499962
      Issue’s Table of Contents

      Copyright © 2013 ACM

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 1 August 2013
      • Accepted: 1 May 2013
      • Revised: 1 April 2013
      • Received: 1 March 2012

      Permissions

      Request permissions about this article.

      Request Permissions

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader
    About Cookies On This Site

    We use cookies to ensure that we give you the best experience on our website.

    Learn more

    Got it!