skip to main content
10.1145/2503385.2503391acmconferencesArticle/Chapter ViewAbstractPublication PagessiggraphConference Proceedingsconference-collections
research-article

Fine water with coarse grids: combining surface meshes and adaptive discontinuous Galerkin

Published:21 July 2013Publication History

ABSTRACT

Simulating water for visual effects demands a high resolution surface with precise dynamics, but a fine discretization of the entire fluid volume is generally inefficient. Prior adaptive methods using octrees or unstructured meshes carry large overheads and implementation complexity. We instead show the potential of sticking with coarse regular Cartesian grids, using detailed cut cells at boundaries, and introducing a p-adaptive Discontinuous Galerkin (DG) method to discretize the pressure projection step in our fluid solver. This retains much of the data structure simplicity of regular grids, more efficiently captures smooth parts of the flow, and offers the flexibility to increase resolving power where needed.

References

  1. Brochu, T., and Bridson, R. 2009. Robust topological operations for dynamic explicit surfaces. SIAM J. Sci. Comput. 31, 4, 2472--2493. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Cockburn, B., Kanschat, G., and Schötzau, D. 2005. The local Discontinuous Galerkin method for linearized incompressible fluid flow: a review. Computers & Fluids 34, 4, 491--506.Google ScholarGoogle ScholarCross RefCross Ref
  3. Kaufmann, P., Martin, S., Botsch, M., and Gross, M. 2009. Flexible simulation of deformable models using Discontinuous Galerkin FEM. Graphical Models 71, 4, 153--167. Special Issue of ACM SIGGRAPH/Eurographics Symp. Comp. Anim. 2008. Google ScholarGoogle ScholarDigital LibraryDigital Library

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in
  • Published in

    cover image ACM Conferences
    SIGGRAPH '13: ACM SIGGRAPH 2013 Posters
    July 2013
    115 pages
    ISBN:9781450323420
    DOI:10.1145/2503385

    Copyright © 2013 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 21 July 2013

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • research-article
  • Article Metrics

    • Downloads (Last 12 months)1
    • Downloads (Last 6 weeks)1

    Other Metrics

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader