skip to main content
research-article

Bilateral blue noise sampling

Published:01 November 2013Publication History
Skip Abstract Section

Abstract

Blue noise sampling is an important component in many graphics applications, but existing techniques consider mainly the spatial positions of samples, making them less effective when handling problems with non-spatial features. Examples include biological distribution in which plant spacing is influenced by non-positional factors such as tree type and size, photon mapping in which photon flux and direction are not a direct function of the attached surface, and point cloud sampling in which the underlying surface is unknown a priori. These scenarios can benefit from blue noise sample distributions, but cannot be adequately handled by prior art.

Inspired by bilateral filtering, we propose a bilateral blue noise sampling strategy. Our key idea is a general formulation to modulate the traditional sample distance measures, which are determined by sample position in spatial domain, with a similarity measure that considers arbitrary per sample attributes. This modulation leads to the notion of bilateral blue noise whose properties are influenced by not only the uniformity of the sample positions but also the similarity of the sample attributes. We describe how to incorporate our modulation into various sample analysis and synthesis methods, and demonstrate applications in object distribution, photon density estimation, and point cloud sub-sampling.

Skip Supplemental Material Section

Supplemental Material

References

  1. Balzer, M., Schlömer, T., and Deussen, O. 2009. Capacity-constrained point distributions: A variant of Lloyd's method. ACM Trans. Graph. 28, 3, 86:1--86:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Bao, G., Li, H., Zhang, X., and Dong, W. 2012. Large-scale forest rendering: Real-time, realistic, and progressive. Comput. Graph. 36, 3, 140--151. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bolander, J., and Saito, S. 1998. Fracture analyses using spring networks with random geometry. Engineering Fracture Mechanics 61, 5, 569--591.Google ScholarGoogle ScholarCross RefCross Ref
  4. Bowers, J., Wang, R., Wei, L.-Y., and Maletz, D. 2010. Parallel Poisson disk sampling with spectrum analysis on surfaces. ACM Trans. Graph. 29, 6, 166:1--166:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Burkhart, H., and Tomé, M. 2012. Indices of individual-tree competition. In Modeling Forest Trees and Stands. Springer Netherlands, 201--232.Google ScholarGoogle Scholar
  6. Chang, J., Alain, B., and Ostromoukhov, V. 2009. Structure-aware error diffusion. ACM Trans. Graph. 28, 5, 162:1--162:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Cook, R. L. 1986. Stochastic sampling in computer graphics. ACM Trans. Graph. 5, 1, 51--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. de Goes, F., Breeden, K., Ostromoukhov, V., and Desbrun, M. 2012. Blue noise through optimal transport. ACM Trans. Graph. 31, 6, 171:1--171:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Diggle, P., Eglen, S., and Troy, J. 2006. Modelling the bivariate spatial distribution of amacrine cells. In Case Studies in Spatial Point Process Modeling, Lecture Notes in Statistics 185. Springer New York, 215--233.Google ScholarGoogle Scholar
  10. Ebeida, M. S., Davidson, A. A., Patney, A., Knupp, P. M., Mitchell, S. A., and Owens, J. D. 2011. Efficient maximal Poisson-disk sampling. ACM Trans. Graph. 30, 4, 49:1--49:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Fattal, R. 2011. Blue-noise point sampling using kernel density model. ACM Trans. Graph. 30, 4, 48:1--48:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Ge, X., Wei, L.-Y., Wang, Y., and Wang, H. 2013. Bilateral blue noise sampling: Additional algorithms and applications. Tech. Rep. OSU-CISRC-8/13-TR17, The Ohio State University - Department of Computer Science and Engineering. ftp://ftp.cse.ohio-state.edu/pub/tech-report/2013/TR17.pdf.Google ScholarGoogle Scholar
  13. Hachisuka, T., Ogaki, S., and Jensen, H. W. 2008. Progressive photon mapping. ACM Trans. Graph. 27, 5, 130:1--130:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Huang, H., Wu, S., Gong, M., Cohen-Or, D., Ascher, U., and Zhang, H. R. 2013. Edge-aware point set resampling. ACM Trans. Graph. 32, 1, 9:1--9:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Illian, J., Penttinen, A., Stoyan, H., and Stoyan, D. 2008. Statistical Analysis and Modelling of Spatial Point Patterns. John Wiley & Sons, Ltd.Google ScholarGoogle Scholar
  16. Jensen, H. W., and Christensen, P. H. 1998. Efficient simulation of light transport in scenes with participating media using photon maps. In SIGGRAPH '98, 311--320. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Jensen, H. W. 1996. Global illumination using photon maps. In Proceedings of the Eurographics Workshop on Rendering Techniques '96, 21--30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Kopf, J., Cohen-Or, D., Deussen, O., and Lischinski, D. 2006. Recursive Wang tiles for real-time blue noise. ACM Trans. Graph. 25, 3, 509--518. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Lagae, A., and Dutré, P. 2008. A comparison of methods for generating Poisson disk distributions. Comput. Graph. Forum 27, 1, 114--129.Google ScholarGoogle ScholarCross RefCross Ref
  20. Lévy, B., and Liu, Y. 2010. Lp centroidal Voronoi tessellation and its applications. ACM Trans. Graph. 29, 4, 119:1--119:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Li, H., Wei, L.-Y., Sander, P. V., and Fu, C.-W. 2010. Anisotropic blue noise sampling. ACM Trans. Graph. 29, 6, 167:1--167:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Lipman, Y., Cohen-Or, D., Levin, D., and Tal-Ezer, H. 2007. Parameterization-free projection for geometry reconstruction. ACM Trans. Graph. 26, 3, 22:1--22:6. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Lloyd, S. 1982. Least squares quantization in PCM. IEEE Transactions on Information Theory 28, 2, 129--137. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Nash, J. 1954. C1--isometric imbeddings. Annals of Mathematics 60, 3, 383--396.Google ScholarGoogle ScholarCross RefCross Ref
  25. Öztireli, A. C., and Gross, M. 2012. Analysis and synthesis of point distributions based on pair correlation. ACM Trans. Graph. 31, 6, 170:1--170:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Öztireli, A. C., Alexa, M., and Gross, M. 2010. Spectral sampling of manifolds. ACM Trans. Graph. 29, 6, 168:1--168:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Pirk, S., Stava, O., Kratt, J., Said, M. A. M., Neubert, B., Měch, R., Benes, B., and Deussen, O. 2012. Plastic trees: Interactive self-adapting botanical tree models. ACM Trans. Graph. 31, 4, 50:1--50:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Pommerening, A. 2002. Approaches to quantifying forest structures. Forestry 75, 3, 305--324.Google ScholarGoogle ScholarCross RefCross Ref
  29. Schechter, H., and Bridson, R. 2012. Ghost SPH for animating water. ACM Trans. Graph. 31, 4, 61:1--61:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Schjøth, L., Sporring, J., and Olsen, O. F. 2008. Diffusion based photon mapping. Comput. Graph. Forum 27, 8, 2114--2127.Google ScholarGoogle ScholarCross RefCross Ref
  31. Schmaltz, C., Gwosdek, P., Bruhn, A., and Weickert, J. 2010. Electrostatic halftoning. Comput. Graph. Forum 29, 8, 2313--2327.Google ScholarGoogle ScholarCross RefCross Ref
  32. Schmaltz, C., Gwosdek, P., and Weickert, J. 2012. Multiclass anisotropic electrostatic halftoning. Comput. Graph. Forum 31, 6, 1924--1935. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Schregle, R. 2003. Bias compensation for photon maps. Comput. Graph. Forum 22, 4, 729--742.Google ScholarGoogle ScholarCross RefCross Ref
  34. Spencer, B., and Jones, M. W. 2009. Into the blue: Better caustics through photon relaxation. Comput. Graph. Forum 28, 2, 319--328.Google ScholarGoogle ScholarCross RefCross Ref
  35. Spencer, B., and Jones, M. W. 2013. Photon parameterisation for robust relaxation constraints. Comput. Graph. Forum 32, 2, to appear.Google ScholarGoogle Scholar
  36. Spencer, B., and Jones, M. W. 2013. Progressive photon relaxation. ACM Trans. Graph. 32, 1, 7:1--7:11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Sun, X., Zhou, K., Guo, J., Xie, G., Pan, J., Wang, W., and Guo, B. 2013. Line segment sampling with blue-noise properties. ACM Trans. Graph. 32, 4, 127:1--127:14. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Tomasi, C., and Manduchi, R. 1998. Bilateral filtering for gray and color images. In ICCV '98, 839--839. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Turk, G. 1992. Re-tiling polygonal surfaces. In SIGGRAPH '92, 55--64. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Ulichney, R. A. 1987. Digital Halftoning. MIT Press, Cambridge, MA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Wei, L.-Y., and Wang, R. 2011. Differential domain analysis for non-uniform sampling. ACM Trans. Graph. 30, 4, 50:1--50:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Wei, L.-Y. 2008. Parallel Poisson disk sampling. ACM Trans. Graph. 27, 3, 20:1--20:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Wei, L.-Y. 2010. Multi-class blue noise sampling. ACM Trans. Graph. 29, 4, 79:1--79:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Yan, D.-M., and Wonka, P. 2013. Gap processing for adaptive maximal Poisson-disk sampling. ACM Trans. Graph., to appear. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Yellott, J. I. J. 1983. Spectral consequences of photoreceptor sampling in the rhesus retina. Science 221, 382--385.Google ScholarGoogle ScholarCross RefCross Ref
  46. Zhou, Y., Huang, H., Wei, L.-Y., and Wang, R. 2012. Point sampling with general noise spectrum. ACM Trans. Graph. 31, 4, 76:1--76:11. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Bilateral blue noise sampling

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Transactions on Graphics
            ACM Transactions on Graphics  Volume 32, Issue 6
            November 2013
            671 pages
            ISSN:0730-0301
            EISSN:1557-7368
            DOI:10.1145/2508363
            Issue’s Table of Contents

            Copyright © 2013 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 1 November 2013
            Published in tog Volume 32, Issue 6

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader