skip to main content
research-article

Gap processing for adaptive maximal poisson-disk sampling

Authors Info & Claims
Published:08 October 2013Publication History
Skip Abstract Section

Abstract

In this article, we study the generation of maximal Poisson-disk sets with varying radii. First, we present a geometric analysis of gaps in such disk sets. This analysis is the basis for maximal and adaptive sampling in Euclidean space and on manifolds. Second, we propose efficient algorithms and data structures to detect gaps and update gaps when disks are inserted, deleted, moved, or when their radii are changed. We build on the concepts of regular triangulations and the power diagram. Third, we show how our analysis contributes to the state-of-the-art in surface remeshing.

Skip Supplemental Material Section

Supplemental Material

References

  1. Alliez, P., Ucelli, G., Gotsman, C., and Attene, M. 2008. Recent advances in remeshing of surfaces. In Shape Analysis and Structuring. Springer, 53--82.Google ScholarGoogle Scholar
  2. Amenta, N. and Bern, M. 1999. Surface reconstruction by voronoi filtering. Discr. Comput. Geom. 22, 481--504.Google ScholarGoogle ScholarCross RefCross Ref
  3. Amenta, N., Bern, M., and Kamvysselis, M. 1998. A new voronoi-based surface reconstruction algorithm. In Proceedings of the ACM SIGGRAPH Conference on Computer Graphics and Interactive Techniques. 415--421. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Ash, P. F. and Bolker, E. D. 1986. Generalized dirichlet tessellations. Geometrae Dedicata 20, 2, 209--243.Google ScholarGoogle ScholarCross RefCross Ref
  5. Aurenhammer, F. 1987. Power diagrams: Properties, algorithms and applications. SIAM J. Comput. 16, 78--96. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Aurenhammer, F. 1991. Voronoi diagrams-A survey of a fundamental geometric data structure. ACM Comput. Surv. 23, 3, 345--405. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Balzer, M., Schlomer, T., and Deussen, O. 2009. Capacity constrained point distributions: A variant of lloyds method. ACM Trans. Graph. 28, 6, 86:1--86:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Barber, C. B., Dobkin, D., and Huhdanpaa, H. 1996. The quickhull algorithm for convex hulls. ACM Trans. Math. Softw. 22, 4, 469--483. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Bowers, J., Wang, R., Wei, L.-Y., and Maletz, D. 2010. Parallel poisson disk sampling with spectrum analysis on surfaces. ACM Trans. Graph. 29, 6, 166:1--166:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Bridson, R. 2007. Fast poisson disk sampling in arbitrary dimensions. In ACM SIGGRAPH Sketches. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Cgai. 2013. Computational geometry algorithms library. http://www. cgal.orgGoogle ScholarGoogle Scholar
  12. Chen, Z., Yuan, Z., Choi, Y.-K., Liu, L., and Wang, W. 2012. IEEE Trans. Vis. Comput. Graph. 18, 10, 1784--1796. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Cheng, S.-W., Dey, T. K., and Levine, J. A. 2007. A practical delaunay meshing algorithm for a large class of domains. In Proceedings of the 16th International Meshing Roundtable. 477--494.Google ScholarGoogle Scholar
  14. Chew, L. P. 1989. Guaranteed-quality triangular meshes. Tech. rep. 89--983, Department of Computer Science, Cornell University.Google ScholarGoogle Scholar
  15. Cline, D., Jeschke, S., Razdan, A., White, K., and Wonka, P. 2009. Dart throwing on surfaces. Comput. Graph. Forum 28, 4, 1217--1226. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Cook, R. L. 1986. Stochastic sampling in computer graphics. ACM Trans. Graph. 5, 1, 69--78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Corsini, M., Cignoni, P., and Scopigno, R. 2012. Efficient and flexible sampling with blue noise properties of triangular meshes. IEEE Trans. Vis. Comput. Graph. 18, 6, 914--924. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. de Goes, F., Breeden, K., Ostromoukhov, V., and Desbrun, M. 2012. Blue noise through optimal transport. ACM Trans. Graph. 31, 171:1--171:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Devillers, O. and Teillaud, M. 2006. Pertubations and vertex removal in delaunay and regular 3d triangulations. Rapport de recherché, INRIA.Google ScholarGoogle Scholar
  20. Dippe, M. A. Z. and Wold, E. H. 1985. Antialiasing through stochastic sampling. In Proceedings of the ACM SIGGRAPH Conference on Computer Graphics and Interactive Techniques. 69--78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Dunbar, D. and Humphreys, G. 2006. A spatial data structure for fast poisson-disk sample generation. ACM Trans. Graph. 25, 3, 503--508. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Ebeida, M. S., Mitchell, S. A., Davidson, A. A., Patney, A., Knupp, P. M., and Owens, J. D. 2011a. Efficient and good delaunay meshes from random points. Comput.-Aid. Des. 43, 11, 1506--1515. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Ebeida, M. S., Mitchell, S. A., Patney, A., Davidson, A. A., and Owens, J. D. 2012. A simple algorithm for maximal poisson-disk sampling in high dimensions. Comput. Graph. Forum 31, 2, 785--794. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Ebeida, M. S., Patney, A., Mitchell, S. A., Davidson, A. A., Knupp, P. M., and Owens, J. D. 2011b. Efficient maximal poisson-disk sampling. ACM Trans. Graph. 30, 4, 49:1--49:12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Edelsbrunner, H. and Shah, N. R. 1996. Incremental topological flipping works for regular triangulations. Algorithmica 15, 3, 223--241.Google ScholarGoogle ScholarCross RefCross Ref
  26. Edelsbrunner, H. and Shah, N. R. 1997. Triangulating topological spaces. Int. J. Comput. Geom. Appl. 7, 4, 365--378.Google ScholarGoogle ScholarCross RefCross Ref
  27. Fattal, R. 2011. Blue-noise point sampling using kernel density model. ACM Trans. Graph. 28, 3, 48:1--48:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Frey, P. and Borouchaki, H. 1997. Surface mesh evaluation. In Proceedings of the 6th International Meshing Roundtable. 363--374.Google ScholarGoogle Scholar
  29. Fu, Y. and Zhou, B. 2008. Direct sampling on surfaces for high quality remeshing. In Proceedings of the ACM Symposium on Solid and Physical Modeling (SPM'08). 115--124. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Gamito, M. N. and Maddock, S. C. 2009. Accurate multi-dimension poisson-disk sampling. ACM Trans. Graph. 29, 1, 8:--8:19. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Jones, T. R. 2006. Efficient generation of poisson disk sampling patterns. J. Graph. Tools 11, 2, 27--36.Google ScholarGoogle ScholarCross RefCross Ref
  32. Kalantari, N. K. and Sen, P. 2011. Efficient computation of blue noise point sets through importance sampling. Comput. Graph. Forum 30, 4, 1215--1221. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Kopf, J., Cohen-Or, D., Deussen, O., and Lischinski, D. 2006. Recursive wang titles for real time blue noise. ACM Trans. Graph. 11, 2, 509--518. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Lagae, A. and Dutre, P. 2008. A comparison of methods for generating poisson disk distributions. Comput. Graph. Forum 27, 1, 114--129.Google ScholarGoogle ScholarCross RefCross Ref
  35. Lloyd, S. 1982. Least square quantization in pcm. IEEE Trans. Inf. Theory 28, 2, 129--137. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. McCool, M. and Fiume, E. 1992. Hierarchical poisson disk sampling distributions. In Proceedings of the Conference on Graphics Interface. 94--105. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Mitchell, D. P. 1987. Generating antialiased images at low sampling densities. In Proceedings of the ACM SIGGRAPH Conference on Computer Graphics and Interactive Techniques. 65--72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Mitchell, D. P. 1991. Spectrally optimal sampling for distribution ray tracing. Proceedings of the ACM SIGGRAPH Conference on Computer Graphics and Interactive Techniques. 157--164. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Mitchell, S. A., Rand, A., Ebieda, M. S., and Bajaj, C. L. 2012. Variable radii poisson disk sampling. In Proceedings of the 24th Canadian Conference on Computational Geometry (CCCG'12). 185--190.Google ScholarGoogle Scholar
  40. Nivoliers, V., Yan, D.-M., and Levy, B. 2012. Fitting polynomial surfaces to triangular meshes with voronoi squared distance minimization. In Proceedings of the 20th International Meshing Roundtable. 601--618.Google ScholarGoogle Scholar
  41. Ostrommoukhov, V., Donohue, C., and Jodoin, P.-M. 2004. Fast hierarchical importance sampling with blue noise properties. ACM Trans. Graph. 23, 3, 488--495. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Schechter, H. and Bridson, R. 2012. Ghost sph for animating water. ACM Trans. Graph. 31, 4, 61:1--61:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Schlomer, T. and Deussen, O. 2011. Accurate spectral analysis of two-dimensional point sets. J. Graph. GPU Game Tools 15, 3, 152--160.Google ScholarGoogle ScholarCross RefCross Ref
  44. Schlomer, T., Heck, D., and Deussen, O. 2011. Farthest-point optimized point sets with maximized minimum distance. In Proceedings of the Conference on High Performance Graphics. 135--142. Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. Shewchuk, J. R. 2002. What is a good linear element? Interpolation, conditioning, and quality measures. In Proceedings of the 11th International Meshing Roundtable. 115--126.Google ScholarGoogle Scholar
  46. Surazhsky, V., Alliez, P., and Gotsman, C. 2003. Isotropic remeshing of surfaces: A local parameterization approach. In Proceedings of the 12th International Meshing Roundtable. 204--231.Google ScholarGoogle Scholar
  47. Turk, G. 1993. Generating random points in triangles. In Graphics Gems. Academic Press, 24--28. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Valette, S., Chassery, J.-M., and Prost, R. 2008. Generic remeshing of 3d triangular meshes with metric-dependent discrete voronoi diagrams. IEEE Trans. Vis. Comput. Graph. 14, 2, 369--381. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Vigo, M., Pla, N., and Cotrina, J. 2002. Regular triangulations of dynamic sets of points. Comput. Aid. Geom. Des. 19, 2, 127--149. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Wei, L.-Y. 2008. Parallel poisson disk sampling. ACM Trans. Graph. 27, 3, 20:1--20:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. Wei, L.-Y. 2010. Multi-class blue noise sampling. ACM Trans. Graph. 29, 4, 79:1--79:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Wei, L.-Y. and Wang. R. 2011. Differential domain analysis for non-uniform sampling. ACM Trans. Graph. 30, 4, 50:1--50:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. White, K. B., Cline, D., and Egbert, P. K. 2007. Poisson disk point sets by hierarchical dart throwing. In Proceedings of the IEEE Symposium on Interactive Ray Tracing. 129--132. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Xu, Y., Hu, R., Gotsman, C., and Liu, L. 2012. Blue noise sampling of surfaces. Comput. Graph. 36, 4, 232--240. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. Yan, D.-M., Levy, B., Liu, Y., Sun, F., and Wang, W. 2009. Isotropic remeshing with fast and exact computation of restricted voronoi diagram. Comput. Graph. Forum 28, 5, 1445--1454. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Yan, D.-M., Wang, W., Levy, B., and Liu, Y. 2013. Efficient computation of clipped voronoi diagram for mesh generation. Comput.-Aid. Des. 45, 4, 843--852. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Gap processing for adaptive maximal poisson-disk sampling

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 32, Issue 5
      September 2013
      142 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/2516971
      Issue’s Table of Contents

      Copyright © 2013 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 8 October 2013
      • Accepted: 1 February 2013
      • Revised: 1 January 2013
      • Received: 1 October 2012
      Published in tog Volume 32, Issue 5

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader