Abstract
In this article, we study the generation of maximal Poisson-disk sets with varying radii. First, we present a geometric analysis of gaps in such disk sets. This analysis is the basis for maximal and adaptive sampling in Euclidean space and on manifolds. Second, we propose efficient algorithms and data structures to detect gaps and update gaps when disks are inserted, deleted, moved, or when their radii are changed. We build on the concepts of regular triangulations and the power diagram. Third, we show how our analysis contributes to the state-of-the-art in surface remeshing.
Supplemental Material
Available for Download
Supplemental movie, appendix, image and software files for, Gap processing for adaptive maximal poisson-disk sampling
- Alliez, P., Ucelli, G., Gotsman, C., and Attene, M. 2008. Recent advances in remeshing of surfaces. In Shape Analysis and Structuring. Springer, 53--82.Google Scholar
- Amenta, N. and Bern, M. 1999. Surface reconstruction by voronoi filtering. Discr. Comput. Geom. 22, 481--504.Google Scholar
Cross Ref
- Amenta, N., Bern, M., and Kamvysselis, M. 1998. A new voronoi-based surface reconstruction algorithm. In Proceedings of the ACM SIGGRAPH Conference on Computer Graphics and Interactive Techniques. 415--421. Google Scholar
Digital Library
- Ash, P. F. and Bolker, E. D. 1986. Generalized dirichlet tessellations. Geometrae Dedicata 20, 2, 209--243.Google Scholar
Cross Ref
- Aurenhammer, F. 1987. Power diagrams: Properties, algorithms and applications. SIAM J. Comput. 16, 78--96. Google Scholar
Digital Library
- Aurenhammer, F. 1991. Voronoi diagrams-A survey of a fundamental geometric data structure. ACM Comput. Surv. 23, 3, 345--405. Google Scholar
Digital Library
- Balzer, M., Schlomer, T., and Deussen, O. 2009. Capacity constrained point distributions: A variant of lloyds method. ACM Trans. Graph. 28, 6, 86:1--86:8. Google Scholar
Digital Library
- Barber, C. B., Dobkin, D., and Huhdanpaa, H. 1996. The quickhull algorithm for convex hulls. ACM Trans. Math. Softw. 22, 4, 469--483. Google Scholar
Digital Library
- Bowers, J., Wang, R., Wei, L.-Y., and Maletz, D. 2010. Parallel poisson disk sampling with spectrum analysis on surfaces. ACM Trans. Graph. 29, 6, 166:1--166:10. Google Scholar
Digital Library
- Bridson, R. 2007. Fast poisson disk sampling in arbitrary dimensions. In ACM SIGGRAPH Sketches. Google Scholar
Digital Library
- Cgai. 2013. Computational geometry algorithms library. http://www. cgal.orgGoogle Scholar
- Chen, Z., Yuan, Z., Choi, Y.-K., Liu, L., and Wang, W. 2012. IEEE Trans. Vis. Comput. Graph. 18, 10, 1784--1796. Google Scholar
Digital Library
- Cheng, S.-W., Dey, T. K., and Levine, J. A. 2007. A practical delaunay meshing algorithm for a large class of domains. In Proceedings of the 16th International Meshing Roundtable. 477--494.Google Scholar
- Chew, L. P. 1989. Guaranteed-quality triangular meshes. Tech. rep. 89--983, Department of Computer Science, Cornell University.Google Scholar
- Cline, D., Jeschke, S., Razdan, A., White, K., and Wonka, P. 2009. Dart throwing on surfaces. Comput. Graph. Forum 28, 4, 1217--1226. Google Scholar
Digital Library
- Cook, R. L. 1986. Stochastic sampling in computer graphics. ACM Trans. Graph. 5, 1, 69--78. Google Scholar
Digital Library
- Corsini, M., Cignoni, P., and Scopigno, R. 2012. Efficient and flexible sampling with blue noise properties of triangular meshes. IEEE Trans. Vis. Comput. Graph. 18, 6, 914--924. Google Scholar
Digital Library
- de Goes, F., Breeden, K., Ostromoukhov, V., and Desbrun, M. 2012. Blue noise through optimal transport. ACM Trans. Graph. 31, 171:1--171:12. Google Scholar
Digital Library
- Devillers, O. and Teillaud, M. 2006. Pertubations and vertex removal in delaunay and regular 3d triangulations. Rapport de recherché, INRIA.Google Scholar
- Dippe, M. A. Z. and Wold, E. H. 1985. Antialiasing through stochastic sampling. In Proceedings of the ACM SIGGRAPH Conference on Computer Graphics and Interactive Techniques. 69--78. Google Scholar
Digital Library
- Dunbar, D. and Humphreys, G. 2006. A spatial data structure for fast poisson-disk sample generation. ACM Trans. Graph. 25, 3, 503--508. Google Scholar
Digital Library
- Ebeida, M. S., Mitchell, S. A., Davidson, A. A., Patney, A., Knupp, P. M., and Owens, J. D. 2011a. Efficient and good delaunay meshes from random points. Comput.-Aid. Des. 43, 11, 1506--1515. Google Scholar
Digital Library
- Ebeida, M. S., Mitchell, S. A., Patney, A., Davidson, A. A., and Owens, J. D. 2012. A simple algorithm for maximal poisson-disk sampling in high dimensions. Comput. Graph. Forum 31, 2, 785--794. Google Scholar
Digital Library
- Ebeida, M. S., Patney, A., Mitchell, S. A., Davidson, A. A., Knupp, P. M., and Owens, J. D. 2011b. Efficient maximal poisson-disk sampling. ACM Trans. Graph. 30, 4, 49:1--49:12. Google Scholar
Digital Library
- Edelsbrunner, H. and Shah, N. R. 1996. Incremental topological flipping works for regular triangulations. Algorithmica 15, 3, 223--241.Google Scholar
Cross Ref
- Edelsbrunner, H. and Shah, N. R. 1997. Triangulating topological spaces. Int. J. Comput. Geom. Appl. 7, 4, 365--378.Google Scholar
Cross Ref
- Fattal, R. 2011. Blue-noise point sampling using kernel density model. ACM Trans. Graph. 28, 3, 48:1--48:10. Google Scholar
Digital Library
- Frey, P. and Borouchaki, H. 1997. Surface mesh evaluation. In Proceedings of the 6th International Meshing Roundtable. 363--374.Google Scholar
- Fu, Y. and Zhou, B. 2008. Direct sampling on surfaces for high quality remeshing. In Proceedings of the ACM Symposium on Solid and Physical Modeling (SPM'08). 115--124. Google Scholar
Digital Library
- Gamito, M. N. and Maddock, S. C. 2009. Accurate multi-dimension poisson-disk sampling. ACM Trans. Graph. 29, 1, 8:--8:19. Google Scholar
Digital Library
- Jones, T. R. 2006. Efficient generation of poisson disk sampling patterns. J. Graph. Tools 11, 2, 27--36.Google Scholar
Cross Ref
- Kalantari, N. K. and Sen, P. 2011. Efficient computation of blue noise point sets through importance sampling. Comput. Graph. Forum 30, 4, 1215--1221. Google Scholar
Digital Library
- Kopf, J., Cohen-Or, D., Deussen, O., and Lischinski, D. 2006. Recursive wang titles for real time blue noise. ACM Trans. Graph. 11, 2, 509--518. Google Scholar
Digital Library
- Lagae, A. and Dutre, P. 2008. A comparison of methods for generating poisson disk distributions. Comput. Graph. Forum 27, 1, 114--129.Google Scholar
Cross Ref
- Lloyd, S. 1982. Least square quantization in pcm. IEEE Trans. Inf. Theory 28, 2, 129--137. Google Scholar
Digital Library
- McCool, M. and Fiume, E. 1992. Hierarchical poisson disk sampling distributions. In Proceedings of the Conference on Graphics Interface. 94--105. Google Scholar
Digital Library
- Mitchell, D. P. 1987. Generating antialiased images at low sampling densities. In Proceedings of the ACM SIGGRAPH Conference on Computer Graphics and Interactive Techniques. 65--72. Google Scholar
Digital Library
- Mitchell, D. P. 1991. Spectrally optimal sampling for distribution ray tracing. Proceedings of the ACM SIGGRAPH Conference on Computer Graphics and Interactive Techniques. 157--164. Google Scholar
Digital Library
- Mitchell, S. A., Rand, A., Ebieda, M. S., and Bajaj, C. L. 2012. Variable radii poisson disk sampling. In Proceedings of the 24th Canadian Conference on Computational Geometry (CCCG'12). 185--190.Google Scholar
- Nivoliers, V., Yan, D.-M., and Levy, B. 2012. Fitting polynomial surfaces to triangular meshes with voronoi squared distance minimization. In Proceedings of the 20th International Meshing Roundtable. 601--618.Google Scholar
- Ostrommoukhov, V., Donohue, C., and Jodoin, P.-M. 2004. Fast hierarchical importance sampling with blue noise properties. ACM Trans. Graph. 23, 3, 488--495. Google Scholar
Digital Library
- Schechter, H. and Bridson, R. 2012. Ghost sph for animating water. ACM Trans. Graph. 31, 4, 61:1--61:8. Google Scholar
Digital Library
- Schlomer, T. and Deussen, O. 2011. Accurate spectral analysis of two-dimensional point sets. J. Graph. GPU Game Tools 15, 3, 152--160.Google Scholar
Cross Ref
- Schlomer, T., Heck, D., and Deussen, O. 2011. Farthest-point optimized point sets with maximized minimum distance. In Proceedings of the Conference on High Performance Graphics. 135--142. Google Scholar
Digital Library
- Shewchuk, J. R. 2002. What is a good linear element? Interpolation, conditioning, and quality measures. In Proceedings of the 11th International Meshing Roundtable. 115--126.Google Scholar
- Surazhsky, V., Alliez, P., and Gotsman, C. 2003. Isotropic remeshing of surfaces: A local parameterization approach. In Proceedings of the 12th International Meshing Roundtable. 204--231.Google Scholar
- Turk, G. 1993. Generating random points in triangles. In Graphics Gems. Academic Press, 24--28. Google Scholar
Digital Library
- Valette, S., Chassery, J.-M., and Prost, R. 2008. Generic remeshing of 3d triangular meshes with metric-dependent discrete voronoi diagrams. IEEE Trans. Vis. Comput. Graph. 14, 2, 369--381. Google Scholar
Digital Library
- Vigo, M., Pla, N., and Cotrina, J. 2002. Regular triangulations of dynamic sets of points. Comput. Aid. Geom. Des. 19, 2, 127--149. Google Scholar
Digital Library
- Wei, L.-Y. 2008. Parallel poisson disk sampling. ACM Trans. Graph. 27, 3, 20:1--20:9. Google Scholar
Digital Library
- Wei, L.-Y. 2010. Multi-class blue noise sampling. ACM Trans. Graph. 29, 4, 79:1--79:8. Google Scholar
Digital Library
- Wei, L.-Y. and Wang. R. 2011. Differential domain analysis for non-uniform sampling. ACM Trans. Graph. 30, 4, 50:1--50:8. Google Scholar
Digital Library
- White, K. B., Cline, D., and Egbert, P. K. 2007. Poisson disk point sets by hierarchical dart throwing. In Proceedings of the IEEE Symposium on Interactive Ray Tracing. 129--132. Google Scholar
Digital Library
- Xu, Y., Hu, R., Gotsman, C., and Liu, L. 2012. Blue noise sampling of surfaces. Comput. Graph. 36, 4, 232--240. Google Scholar
Digital Library
- Yan, D.-M., Levy, B., Liu, Y., Sun, F., and Wang, W. 2009. Isotropic remeshing with fast and exact computation of restricted voronoi diagram. Comput. Graph. Forum 28, 5, 1445--1454. Google Scholar
Digital Library
- Yan, D.-M., Wang, W., Levy, B., and Liu, Y. 2013. Efficient computation of clipped voronoi diagram for mesh generation. Comput.-Aid. Des. 45, 4, 843--852. Google Scholar
Digital Library
Index Terms
Gap processing for adaptive maximal poisson-disk sampling
Recommendations
Accurate multidimensional Poisson-disk sampling
We present an accurate and efficient method to generate samples based on a Poisson-disk distribution. This type of distribution, because of its blue noise spectral properties, is useful for image sampling. It is also useful for multidimensional Monte ...
Parallel Poisson disk sampling
Sampling is important for a variety of graphics applications include rendering, imaging, and geometry processing. However, producing sample sets with desired efficiency and blue noise statistics has been a major challenge, as existing methods are either ...
Efficient maximal poisson-disk sampling
We solve the problem of generating a uniform Poisson-disk sampling that is both maximal and unbiased over bounded non-convex domains. To our knowledge this is the first provably correct algorithm with time and space dependent only on the number of ...





Comments