skip to main content
research-article

High-quality computational imaging through simple lenses

Published:08 October 2013Publication History
Skip Abstract Section

Abstract

Modern imaging optics are highly complex systems consisting of up to two dozen individual optical elements. This complexity is required in order to compensate for the geometric and chromatic aberrations of a single lens, including geometric distortion, field curvature, wavelength-dependent blur, and color fringing.

In this article, we propose a set of computational photography techniques that remove these artifacts, and thus allow for postcapture correction of images captured through uncompensated, simple optics which are lighter and significantly less expensive. Specifically, we estimate per-channel, spatially varying point spread functions, and perform nonblind deconvolution with a novel cross-channel term that is designed to specifically eliminate color fringing.

Skip Supplemental Material Section

Supplemental Material

tp168.mp4

References

  1. Beck, A. and Teboulle, M. 2009. A fast iterative shrinkage-thresholding alogorithm for linear inverse problems. SIAM J. Image Sci. 2, 182--202. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Brauers, J., Seiler, C., and Aach, T. 2010. Direct psf estimation using a random noise target. In Proceedings of the International Society for Optical Engineering (SPIE'10). 75370B.Google ScholarGoogle Scholar
  3. Chambolle, A. and Pock, T. 2011. A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40, 120--145. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Chan, S., Khoshabeh, R., Gibson K., Gill, P., and Nguyen, T. 2011. IEEE Trans. Image Proc. 20, 11, 3097--3111. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Cho, T. S., Joshi, N., Zitnick, C. L., Kang, S. B., Szeliski, R., and FREEMAN, W. T. 2010. A content-aware image prior. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 169--176.Google ScholarGoogle ScholarCross RefCross Ref
  6. Cho, T. S., Zitnick, C. L., Joshi, N., Kang, S. B., Szeliski, R., and Freeman, W. T. 2012. Image restoration by matching gradient distributions. IEEE Trans. Pattern Anal. Mach. Intell. 34, 4, 683--694. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Chung, S. W., Kim, B.-K., and Song, W.-J. 2009. Detecting and eliminating chromatic aberration in digital images. In Proceedings of the 16th IEEE International Conference on Image Processing (ICIP'12). 3905--3908. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Combettes, B. L. and Pesquet, J.-C. 2011. Proximal splitting methods in signal processing. In Fixed Point Algorithms for Inverse Problems in Science and Engineering. Springer, 185--212.Google ScholarGoogle Scholar
  9. Cossarit, O. and Nayar, S. 2010. Spectral focal sweep. Extended depth of field from chromactic aberrations sweep. In Proceedings of the IEEE Conference on Computational Photography (ICCP'10). 1--8.Google ScholarGoogle Scholar
  10. Friedlander, M. P. 2011. Sparse optimization minitutorial. http://www. ca.ubc./∼mpf/papers/-tutorial-siopt11.pdfGoogle ScholarGoogle Scholar
  11. Guass, C. 1841. Dioptrische Untersuchungen. Dieterich.Google ScholarGoogle Scholar
  12. Gibson, J. D. and Bovik, A., Eds. 2000. Handbook of Image and Video Processing. Academic Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Goldluecke, B. and Cremers, D. 2011. Introducing total curvature for image processing. In Proceedings of the International Conference on Computer Vision. 1267--1274. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Goldstein, T. and Osher, S. 2009. The split bregman method for l1-regularized problems. SIAM J. Image Sci. 2, 323--343. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Guichard, F., Nguyen, H. P., Tessires, R., Pyanet, M., Tarchouna, I., and Cao, F. 2009. Extended depths-of-field using sharpness transport across color channels. In Proceeding of the International Society for Optical Engineering (SPIE'09).Google ScholarGoogle Scholar
  16. Joshi, N., Lawrence, C., Zitnick, R., Szeliski, D., and Kriegman, J. 2009. Imagr deblurring and denoising using color priors. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 1550--1557.Google ScholarGoogle Scholar
  17. Joshi, N., Szeliski, R., and Kriegman, J. 2008. Psf estimation using sharp edge prediction. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 1--8.Google ScholarGoogle Scholar
  18. Kang, S. B. 2007. Automatic removal of chromatic aberration from a single image. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 1--8.Google ScholarGoogle ScholarCross RefCross Ref
  19. Kee, E., Paris, S., Chen, S., and Wang, J. 2011. Modeling and removing spatially varying optical blur. In Proceedings of the IEEE Conference on Computational Photography (ICCP'11). 1--8.Google ScholarGoogle Scholar
  20. Krishnan, D. and Fergus, R. 2009. Fast image deconvolution using hyper-laplacian priors. Adv. Neural Inf. Process. Syst. 22, 1--9.Google ScholarGoogle Scholar
  21. Levin, A., Fergus, R., Durand, F., and Freeman, W. T. 2007. Image and depth from a conventional camera with a coated aperature. ACM Trans. Graph. 26, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Lucy, L. 1974. An iterative technique for the rectification of observed distributions. The Astronom. J. 79, 745--.Google ScholarGoogle ScholarCross RefCross Ref
  23. Mahajan, V. N. 1991. Aberration Theory Made Simple. SPIE.Google ScholarGoogle Scholar
  24. Nesterov, Y. 2005. Smooth minimization of non smooth functions. Math. Program. 103, 127--152. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Rashed, R. 1990. A pioneer in anaclastics: Iben sahl on burning mirrors and lenses. Isis 81, 3, 464--491.Google ScholarGoogle ScholarCross RefCross Ref
  26. Richardson, W. H. 1972. Bayesian-based iterative method of image restoration. J. Optical Soc. Amer. 62, 55--59.Google ScholarGoogle ScholarCross RefCross Ref
  27. Rowland, T. 2012. Operator norm. http://mathworld.wolfram.com/OperatorNorm.html.Google ScholarGoogle Scholar
  28. Rump, M. and Klein, R. 2010. Spectralization: Reconstructing spectra from spare data. In Proceedings of the 21st Eurographics Conference on Rendering Techniques, J. Lawrence and M. Stamminger, Eds. Eurographics Association, 1347--1354. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Schuler, C. J., Hirsch, M., Harmeling, S., and Scholkopf, B. 2011. Non-stationary correction of optical abberations. In Proceedings of the IEEE International Conference on Computer Vision (ICCV'11). 659--666. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Seidel, L. 1857. Uber die theorie der fehler, mit welchen die durch optische instrumente gesehenen bilder behaftet sind, und uber die mathe matischen bedingungen ihrer aufhebung. Abhandlungen der Naturwissenschaftlich-Technischen Commission bei der Konigl. Bayerischen Akademie der Wissen schaften in Munchen. Cotta.Google ScholarGoogle Scholar
  31. Shih, Y., Guenter, V., and Joshi, N. 2012. Image enhancement using calibrated lens simulations. In Proceedings of the European Conference on Computer Vision (ECCV'12), A. Fitzgibbon, S. Lazebnik, P. Perona, Y. Sato, and C. Schmid, Eds. Lecture Notes in Computer Science, vol. 7575. Springer, 42--56. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Trimeche, M., Paliy, D., Vehvilainen, M., and Katkovnik, V. 2005. Multichannel image deblurring of raw color components. In Proceedings of the SPIE Conference on Computational Imaging. 169--178.Google ScholarGoogle Scholar
  33. Wiener, N. 1964. Extrapolation, Interpolation, and Smoothing of Stationary Time Series. The MIT Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Yuan, L., Sun, J., Quan, L., and Shum, H.-Y. 2007. Image deblurring with blurred noisy image pairs. ACM Trans. Graph. 26, 3, 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Yuan, L., Sun, J., Quan, L., and Shum, H.-Y. 2008. Progressive inter-scale and intra-scale non-blind image deconvolution. ACM Trans. Graph. 27, 3, 74:1--74:10. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. High-quality computational imaging through simple lenses

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Graphics
          ACM Transactions on Graphics  Volume 32, Issue 5
          September 2013
          142 pages
          ISSN:0730-0301
          EISSN:1557-7368
          DOI:10.1145/2516971
          Issue’s Table of Contents

          Copyright © 2013 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 8 October 2013
          • Accepted: 1 March 2013
          • Revised: 1 February 2013
          • Received: 1 October 2012
          Published in tog Volume 32, Issue 5

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader