ABSTRACT
This paper provides a sample for acquiring and processing crowd sourced mobile sensor data. An infrastructure for receiving and storing has been developed as well as the corresponding clients that collect smartphone sensor data and send them to the server. Tests and statistics were generated to get first impressions how data logging and storing will work. To analyze the collected data, a web based visualizing toolkit has been connected as well as a processing framework to generate refined geodata. Giving an example on possibilities with crowd sourced sensor data a classification approach using crowd generated categories and data mining methods.
- C. Brooks, K. Iagnemma, and S. Dubowsky. Vibration-based Terrain Analysis for Mobile Robots. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation, pages 3415--3420. IEEE, 2005.Google Scholar
Cross Ref
- J. Eriksson, L. Girod, B. Hull, R. Newton, S. Madden, and H. Balakrishnan. The Pothole Patrol: Using a Mobile Sensor Network for Road Surface Monitoring. Architecture, 2008.Google Scholar
- T. Fahrni, M. Kuhn, P. Sommer, R. Wattenhofer, and S. Welten. Sundroid: Solar Radiation Awareness with Smartphones. 2011.Google Scholar
- M. F. Goodchild. Citizens as sensors: the world of volunteered geography. GeoJournal, 69(4):211--221, Nov. 2007.Google Scholar
Cross Ref
- C. Heipke. Crowdsourcing geospatial data. ISPRS Journal of Photogrammetry and Remote Sensing, 65(6):550--557, Nov. 2010.Google Scholar
Cross Ref
- W. Z. Khan, Y. Xiang, M. Y. Aalsalem, and Q. Arshad. Mobile Phone Sensing Systems: A Survey. pages 1--26, 2012.Google Scholar
- N. D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and A. Campbell. A survey of mobile phone sensing. IEEE Communications Magazine, 48(9):140--150, Sept. 2010. Google Scholar
Digital Library
- J. Lauer, A. Jochem, and A. Zipf. Straßenzustandsermittlung durch Klassifikation mobiler Sensordaten von Smartphones. In 8. GI/KuVS-Fachgespräch âĂđOrtsbezogene Anwendungen und DiensteâĂIJ, number i, 2011.Google Scholar
- D. Luxen and P. Sanders. Hierarchy Decomposition for Faster User Equilibria on Road Networks. Most, pages 242--253, 2011. Google Scholar
Digital Library
- I. Mierswa, M. Wurst, R. Klinkenberg, M. Scholz, and T. Euler. YALE: Rapid Prototyping for Complex Data Mining Tasks. In L. Ungar, M. Craven, D. Gunopulos, and T. Eliassi-Rad, editors, KDD '06: Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 935--940, New York, NY, USA, Aug. 2006. ACM. Google Scholar
Digital Library
- P. Mohan, V. N. Padmanabhan, and R. Ramjee. Nericell: Rich Monitoring of Road and Traffic Conditions using Mobile Smartphones. Proceedings of the 6th ACM conference on Embedded network sensor systems, pages 323--336, 2008. Google Scholar
Digital Library
- A. Müller, P. Neis, M. Auer, and A. Zipf. Ein Routenplaner für Rollstuhlfahrer auf der Basis von Einführung in die Thematik Motivation und Zielsetzung Stand der Technik. In Angewandte Geoinformatik 2010, pages 1--4, Salzburg, Austria, 2010.Google Scholar
- P. Neis, D. Zielstra, and A. Zipf. The Street Network Evolution of Crowdsourced Maps: OpenStreetMap in Germany 2007--2011. Future Internet, 4(4):1--21, Dec. 2011.Google Scholar
Cross Ref
- P. Neis and A. Zipf. Zur Kopplung von OpenSource, OpenLS und OpenStreetMaps in OpenRouteService. org. 2007.Google Scholar
- P. Newson and J. Krumm. Hidden Markov map matching through noise and sparseness. In Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems - GIS '09, page 336, New York, New York, USA, Nov. 2009. ACM Press. Google Scholar
Digital Library
- T. O'Reilly. What Is Web 2.0 - O'Reilly Media, 2005.Google Scholar
- C. Weiss, H. Frohlich, and A. Zell. Vibration-based Terrain Classification Using Support Vector Machines. In 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 4429--4434. IEEE, Oct. 2006.Google Scholar
- J.-s. Yang, S.-p. Kang, and K.-s. Chon. The Map Matching Algorithm of GPS Data with Relatively Long Polling Time Intervals. Journal of the Eastern Asia Society for Transportation Studies, 6:2561--2573, 2005.Google Scholar
Index Terms
Processing crowd sourced sensor data: from data acquisition to application





Comments