10.1145/2576768.2598282acmconferencesArticle/Chapter ViewAbstractPublication PagesgeccoConference Proceedings
research-article

Efficient global optimization for combinatorial problems

ABSTRACT

Real-world optimization problems may require time consuming and expensive measurements or simulations. Recently, the application of surrogate model-based approaches was extended from continuous to combinatorial spaces. This extension is based on the utilization of suitable distance measures such as Hamming or Swap Distance. In this work, such an extension is implemented for Kriging (Gaussian Process) models. Kriging provides a measure of uncertainty when determining predictions. This can be harnessed to calculate the Expected Improvement (EI) of a candidate solution. In continuous optimization, EI is used in the Efficient Global Optimization (EGO) approach to balance exploitation and exploration for expensive optimization problems. Employing the extended Kriging model, we show for the first time that EGO can successfully be applied to combinatorial optimization problems. We describe necessary adaptations and arising issues as well as experimental results on several test problems. All surrogate models are optimized with a Genetic Algorithm (GA). To yield a comprehensive comparison, EGO and Kriging are compared to an earlier suggested Radial Basis Function Network, a linear modeling approach, as well as model-free optimization with random search and GA. EGO clearly outperforms the competing approaches on most of the tested problem instances.

References

  1. L. Altenberg. NK Fitness Landscapes, chapter B2.7.2, pages B2.7:5--B2.7:10. IOP Publishing Ltd and Oxford University Press, 1997.Google ScholarGoogle Scholar
  2. N. S. Altman. An introduction to kernel and nearest-neighbor nonparametric regression. The American Statistician, 46(3):175--185, Aug 1992.Google ScholarGoogle Scholar
  3. T. Bartz-Beielstein, C. Lasarczyk, and M. Preu. Sequential parameter optimization. In B. McKay et al., editors, Congress on Evolutionary Computation (CEC'05), Proceedings, pages 773--780. IEEE, 2005.Google ScholarGoogle Scholar
  4. A. Beham, E. Pitzer, and M. Affenzeller. A new metric to measure distances between solutions to the quadratic assignment problem. In International Symposium on Logistics and Industrial Informatics (LINDI'11), Proceedings, pages 45--50. IEEE, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  5. H. S. Bernardino, L. G. Fonseca, and H. J. C. Barbosa. Surrogate-Assisted Artificial Immune Systems for Expensive Optimization Problems, chapter 10, pages 179--198. InTech, Oct 2009.Google ScholarGoogle Scholar
  6. R. E. Burkard. Quadratic assignment problems. European Journal of Operational Research, 15(3):283 -- 289, 1984.Google ScholarGoogle ScholarCross RefCross Ref
  7. R. E. Burkard, S. E. Karisch, and F. Rendl. QAPLIB -- a quadratic assignment problem library. Journal of Global Optimization, 10(4):391--403, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. S. Fatima and A. Kattan. Evolving optimal agendas for package deal negotiation. In N. Krasnogor et al., editors, Genetic and Evolutionary Computation Conference (GECCO'11), Proceedings, pages 505--512. ACM, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. L. Fonseca, H. Barbosa, and A. Lemonge. A similarity-based surrogate model for expensive evolutionary optimization with fixed budget of simulations. In Congress on Evolutionary Computation, pages 867--874. IEEE, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. A. Forrester, A. Sobester, and A. Keane. Engineering Design via Surrogate Modelling. Wiley, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  11. A. I. Forrester, A. Sóbester, and A. J. Keane. Multi-fidelity optimization via surrogate modelling. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 463(2088):3251--3269, Dec 2007.Google ScholarGoogle ScholarCross RefCross Ref
  12. F. Hutter. Automated configuration of algorithms for solving hard computational problems. PhD thesis, University of British Columbia, 2009.Google ScholarGoogle Scholar
  13. Y. Jin. A comprehensive survey of fitness approximation in evolutionary computation. Soft Computing, 9(1):3--12, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Y. Jin. Surrogate-assisted evolutionary computation: Recent advances and future challenges. Swarm and Evolutionary Computation, 1(2):61 -- 70, 2011.Google ScholarGoogle Scholar
  15. D. R. Jones, M. Schonlau, and W. J. Welch. Efficient global optimization of expensive black-box functions. Journal of Global Optimization, 13(4):455--492, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. A. Kattan and E. Galvan. Evolving radial basis function networks via gp for estimating fitness values using surrogate models. In Congress on Evolutionary Computation (CEC'12), Proceedings, pages 1--7. IEEE, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  17. S. A. Kauffman. The Origins of Order: Self-Organization and Selection in Evolution. Oxford University Press, USA, 1993.Google ScholarGoogle Scholar
  18. H.-S. Kim and S.-B. Cho. An efficient genetic algorithm with less fitness evaluation by clustering. In Congress on Evolutionary Computation (CEC'01), Proceedings, volume 2, pages 887--894. IEEE, 2001.Google ScholarGoogle Scholar
  19. R. Li, M. T. M. Emmerich, J. Eggermont, E. G. P. Bovenkamp, T. Back, J. Dijkstra, and J. Reiber. Metamodel-assisted mixed integer evolution strategies and their application to intravascular ultrasound image analysis. In Congress on Evolutionary Computation, pages 2764--2771. IEEE, 2008.Google ScholarGoogle Scholar
  20. A. Moraglio and A. Kattan. Geometric generalisation of surrogate model based optimisation to combinatorial spaces. In Proceedings of the 11th European Conference on Evolutionary Computation in Combinatorial Optimization, EvoCOP'11, pages 142--154, Berlin, Heidelberg, 2011. Springer-Verlag. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. A. Moraglio and A. Kattan. Geometric surrogate model based optimisation for genetic programming: Initial experiments. Technical report, University of Birmingham, 2011.Google ScholarGoogle Scholar
  22. A. Moraglio, Y.-H. Kim, and Y. Yoon. Geometric surrogate-based optimisation for permutation-based problems. In N. Krasnogor et al., editors, Genetic and Evolutionary Computation Conference (GECCO'11), Companion, pages 133--134. ACM, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. M. Pelikan, D. E. Goldberg, and E. Cantu-Paz. BOA: The bayesian optimization algorithm. In W. Banzhaf et al., editors, Genetic and Evolutionary Computation Conference, pages 525--532. Morgan Kaufmann, 1999.Google ScholarGoogle Scholar
  24. J. C. Platt, C. J. Burges, S. Swenson, C. Weare, and A. Zheng. Learning a gaussian process prior for automatically generating music playlists. In NIPS, pages 1425--1432, 2001.Google ScholarGoogle Scholar
  25. P. A. Romero, A. Krause, and F. H. Arnold. Navigating the protein fitness landscape with gaussian processes. Proceedings of the National Academy of Sciences, 110(3):E193--E201, 2013.Google ScholarGoogle ScholarCross RefCross Ref
  26. J. Sacks, W. J. Welch, T. J. Mitchell, and H. P. Wynn. Design and analysis of computer experiments. Statistical Science, 4(4):409--435, 1989.Google ScholarGoogle ScholarCross RefCross Ref
  27. T. Schiavinotto and T. Stutzle. A review of metrics on permutations for search landscape analysis. Computers & operations research, 34(10):3143--3153, 2007. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. M. Sevaux, K. Sorensen, et al. Permutation distance measures for memetic algorithms with population management. In Metaheuristics International Conference, 2005.Google ScholarGoogle Scholar
  29. R. E. Smith, B. A. Dike, and S. A. Stegmann. Fitness inheritance in genetic algorithms. In Proceedings of the 1995 ACM Symposium on Applied Computing, SAC '95, pages 345--350, New York, NY, USA, 1995. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. I. Voutchkov, A. Keane, A. Bhaskar, and T. M. Olsen. Weld sequence optimization: The use of surrogate models for solving sequential combinatorial problems. Computer Methods in Applied Mechanics and Engineering, 194(30-33):3535--3551, Aug 2005.Google ScholarGoogle ScholarCross RefCross Ref
  31. E. D. Weinberger. Np completeness of kauffman's n-k model, a tuneable rugged fitness landscape. Working Papers 96-02-003, Santa Fe Institute, Feb. 1996.Google ScholarGoogle Scholar
  32. M. Zlochin, M. Birattari, N. Meuleau, and M. Dorigo. Model-based search for combinatorial optimization: A critical survey. Annals of Operations Research, 131(1-4):373--395, 2004.Google ScholarGoogle Scholar

Index Terms

  1. Efficient global optimization for combinatorial problems

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader
        About Cookies On This Site

        We use cookies to ensure that we give you the best experience on our website.

        Learn more

        Got it!